175
Publ. Astron. Soc. Japan (2022) 74 (1), 175-208
https://doi.org/10.1093/pasj/psab115

Advance Access Publication Date: 2022 January 8

HSC-XXL: Baryon budget of the 136 XXL groups
and clusters’

Daichi Akino,’* Dominique EckerT,?> Nobuhiro Okage (=134

Mauro SERENO %6 Keiichi UMETsU /,” Masamune OGuRI 2210

Fabio GASTALDELLO,"" I-Non CHiu 2,7 Stefano ETTORI,%®

August E. EVRARD, "> Arya FARAHI,'?1* Ben MAUGHAN =,

Marguerite PIERRE,"® Marina Ricc1,'® Ivan VALTcHANOV (,"7 lan McCARTHY, '8
Sean MCcGEE,"® Satoshi Mivazaki,?® Atsushi J. NisHizawa (=, and
Masayuki TANAKAZC

'Physics Program, Graduate School of Advanced Science and Engineering, Hiroshima University,
1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
2Department of Astronomy, University of Geneva, ch. d'Ecogia 16, 1290 Versoix, Switzerland
3Hiroshima Astrophysical Science Center, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima,
Hiroshima 739-8526, Japan
“Core Research for Energetic Universe, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima,
Hiroshima 739-8526, Japan
SINAF - Osservatorio di Astrofisica e Scienza dello Spazio di Bologna, via Piero Gobetti 93/3, 1-40129
Bologna, Italy
SINFN, Sezione di Bologna, viale Berti Pichat 6/2, 40127 Bologna, Italy
"Academia Sinica Institute of Astronomy and Astrophysics (ASIAA), No. 1, Section 4, Roosevelt Road,
Taipei 10617, Taiwan
8Research Center for the Early Universe, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033,
Japan
9Department of Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
10K avli Institute for the Physics and Mathematics of the Universe (Kavli IPMU, WPI), The University of
Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8583, Japan
"INAF - IASF Milano, via Bassini 15, 1-20133 Milano, Italy
12Department of Physics and Michigan Center for Theoretical Physics, University of Michigan, Ann Arbor,
MI 48109, USA
3McWilliams Center for Cosmology, Department of Physics, Carnegie Mellon University, Pittsburgh, PA
15213, USA
1%H. H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL, UK
5AIM, CEA, CNRS, Université Paris-Saclay, Université Paris Diderot, Sorbonne Paris Cité, F-91191
Gif-sur-Yvette, France
18 aboratoire d’Annecy de Physique des Particules, Université Savoie Mont Blanc, CNRS/IN2P3, 74941
Annecy, France
"Telespazio UK for ESA, European Space Astronomy Centre, Operations Department, E-28691 Villanueva
de la Cafiada, Spain
18 Astrophysics Research Institute, Liverpool John Moores University, 146 Brownlow Hill, Liverpool L3 5RF,
UK
19School of Astronomy and Physics, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
2National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan

© The Author(s) 2022. Published by Oxford University Press on behalf of the Astronomical Society of Japan.
All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

220z Jaquieldag GO uo Jesn (81sali] Ip 00IWLOUOASY OLOIBAISBSSQ) 81sall] VNI Aq 6GE10S9/S/ L/ L/ ./21onle/lsed/woo dno oiwapeoe)/:sdiy Wwolj papeojumo(


https://doi.org/10.1093/pasj/psab115
http://orcid.org/0000-0003-2898-0728
http://orcid.org/0000-0003-0302-0325
http://orcid.org/0000-0002-7196-4822
http://orcid.org/0000-0002-5819-6566
http://orcid.org/0000-0003-0791-9098
http://orcid.org/0000-0001-9930-7886
http://orcid.org/0000-0002-6109-2397
mailto:journals.permissions@oup.com

176 Publications of the Astronomical Society of Japan (2022), Vol. 74, No. 1

Zl|nstitute for Advanced Research, Nagoya University, Furocho, Chikusa-ku, Nagoya, Aichi 464-8602,
Japan

*E-mail: akinodaichi1213@gmail.com
"Based on data collected at Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.

Received 2021 March 16; Accepted 2021 November 19

Abstract

We present our determination of the baryon budget for an X-ray-selected XXL sample
of 136 galaxy groups and clusters spanning nearly two orders of magnitude in mass
(Msoo ~ 10"3-10"® M) and the redshift range 0 < z < 1. Our joint analysis is based on the
combination of Hyper Suprime-Cam Subaru Strategic Program (HSC-SSP) weak-lensing
mass measurements, XXL X-ray gas mass measurements, and HSC and Sloan Digital
Sky Survey multiband photometry. We carry out a Bayesian analysis of multivariate
mass-scaling relations of gas mass, galaxy stellar mass, stellar mass of brightest cluster
galaxies (BCGs), and soft-band X-ray luminosity, by taking into account the intrinsic
covariance between cluster properties, selection effect, weak-lensing mass calibration,
and observational error covariance matrix. The mass-dependent slope of the gas mass—
total mass (Msq) relation is found to be 1.29f8;]g, which is steeper than the self-similar
prediction of unity, whereas the slope of the stellar mass—total mass relation is shallower
than unity; 0.85%3:2. The BCG stellar mass weakly depends on cluster mass with a slope
of 0.49f8:]8. The baryon, gas mass, and stellar mass fractions as a function of M5y, agree
with the results from numerical simulations and previous observations. We successfully
constrain the full intrinsic covariance of the baryonic contents. The BCG stellar mass
shows the larger intrinsic scatter at a given halo total mass, followed in order by stellar
mass and gas mass. We find a significant positive intrinsic correlation coefficient between
total (and satellite) stellar mass and BCG stellar mass and no evidence for intrinsic
correlation between gas mass and stellar mass. All the baryonic components show no
redshift evolution.

Key words: galaxies: clusters: intracluster medium — galaxies: stellar content— gravitational lensing: weak —
X-rays: galaxies: clusters

1 Introduction

Galaxy groups and clusters are self-gravitating objects
with total mass between ~10"> M and ~10"° M. They
contain diffuse thin plasma, galaxies and dark matter. The
diffuse gas, referred to as hot baryon, is observed by X-ray
satellites or the Sunyaev—Zel’dovich (SZ) effect. The cold
baryons reside mostly in galaxies, the stellar component
of which can be observed by optical and/or (near)-infrared
telescopes. Galaxies are mainly classified as central
brightest cluster galaxies (BCGs) or satellite galaxies. Based
on the hierarchical structure formation model, objects
form via gravitational collapse of a large volume and thus
collect baryons into their halo potentials. Therefore, in the
absence of dissipation, the baryon mass fraction is expected
to be close to the universal average, €2,/Q.,, measured
from cosmic microwave background (CMB) experiments

(e.g., White et al. 1993; Evrard 1997; Ettori 2003). More-
over, the cold and hot baryons affect each other through
non-gravitational interactions such as star formation,
cluster mergers, and energy feedback processes by active
galactic nuclei (AGNs) and supernove (SN).

Recent numerical simulations (e.g., McCarthy et al.
2011; Young et al. 2011; Planelles et al. 2013; Le Brun
et al. 2014; Martizzi et al. 2014; Wu et al. 2015; Sembolini
et al. 2016a; Barnes et al. 2017a; McCarthy et al. 2017,
Farahi et al. 2018b, 2020; Henden et al. 2020) showed
that the radiative processes convert gas to stars and signifi-
cantly affect the evolution of the baryonic components. The
details highly depend on AGN models and radiative codes
(e.g., McCarthy et al. 2011; Le Brun et al. 2014; Sembolini
etal. 2016b). In general, the star formation rate is more effi-
cient in groups on the scale of ~10" M than in massive
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clusters of ~10'" M. Furthermore, AGN feedback in
groups is energetic enough to expel hot gas out from their
relatively shallow gravitational potentials. It is expected
that the baryon contents depend on the halo mass. There-
fore, a cluster sample covering as wide a mass range as pos-
sible provides us with a unique opportunity to understand
baryonic physics and its relationship with cluster properties.

The XXL Survey (Giles et al. 2016; Lieu et al. 2016;
Pacaud et al. 2016; Pierre et al. 2016; Pompei et al. 2016;
Adami et al. 2018; Guglielmo et al. 2018) is one of the
largest observing programs undertaken by XMM-Newton,
covering two distinct sky areas for a total of 50 square
degrees down to a sensitivity of 6 x 107" ergem™2s™! for
point-like sources ([0.5-2] keV band). Nearly 400 galaxy
clusters and groups have been detected (Adami et al. 2018)
over a wide range of nearly two orders of magnitude in
mass (10°-10" M) up to z ~ 2. The XXL cluster sample
is optimal (Eckert et al. 2016; Adami et al. 2018; Sereno
et al. 2020; Umetsu et al. 2020; Willis et al. 2021) for
studying the baryon budget of groups and clusters.

Eckert et al. (2016) investigated the gas mass fraction
for 100 clusters and the stellar mass fraction for 34 clusters
from the XXL first cluster catalog (DR1; Pacaud et al.
2016). Each cluster mass was estimated through their X-ray
temperature, calibrated with weak-lensing masses for a
subset of 38 clusters covered by the Canada—France-Hawaii
Telescope Legacy Survey (CFHTLS; Lieu et al. 2016) . They
found that the total baryon fraction within rs5qy falls short
of Q,/Q., by about a factor of two. Here, the subscript
500 denotes that the mean enclosed density is 500 times
the critical density of the Universe at the cluster redshift.

The Hyper Suprime-Cam Subaru Strategic Program
(HSC-SSP; Aihara et al. 2018a, 2018b, 2019; Bosch et al.
2018; Coupon et al. 2018; Furusawa et al. 2018; Huang
et al. 2018a; Kawanomoto et al. 2018; Komiyama et al.
2018; Miyazaki et al. 2018b; Nishizawa et al. 2020) is
an on-going wide-field optical imaging survey composed
of three layers of different depths (Wide, Deep, and
UltraDeep). The Wide layer is designed to obtain five-band
(grizy) imaging over 1400 deg?. The survey footprint signif-
icantly overlaps with the northern sky of the XXL Survey.
The HSC-SSP Survey has excellent imaging quality (~077
seeing in the i-band) and reaches a depth of » < 26 ABmag,
enabling the measurement of weak-lensing masses and
photometry of the XXL clusters in the overlapped footprint.

Umetsu et al. (2020) measured weak-lensing masses
for the 136 XXL clusters in the HSC-SSP survey footprint
using the HSC-SSP shape catalog (see details in Mandel-
baum et al. 2018a, 2018b). They found that the CFHTLS
weak-lensing masses, Msy, are on average 34% +20%
higher than the HSC-SSP ones. Sereno et al. (2020) studied
the multivariate scaling relations of X-ray luminosity,

temperature, gas mass, and hydrostatic mass for 118 XXL
clusters. They measured the gas mass within an overdensity
radius, 7kt which is computed with an iterative proce-
dure using the surface brightness profile and the f,—Mso
relation from Eckert et al. (2016). However, they used
the HSC-SSP weak-lensing masses (Myys; Umetsu et al.
2020) and investgated the scaling relation between the gas
mass M, (< r55") and the weak-lensing mass M5 (< 735)
defined at different radii. Furthermore, Sereno et al. (2020)
did not consider the mass of stellar components in the
scaling relation analysis. Therefore, it is vitally important
to measure the gas mass and the stellar mass using the
same overdensity radius as the weak-lensing mass and
investigate the gas mass, stellar mass, and total baryon
mass fractions in a self-consistent manner.

This paper investigates the gas and stellar mass frac-
tions of the 136 XXL clusters, which are consistently
measured within the overdensity radii 7509 determined by
weak-lensing masses (Umetsu et al. 2020). We employ
Bayesian forward modeling, following Sereno (2016) and
Sereno et al. (2020), to study multivariate scaling relations.
The error covariance matrix, including error correlation
induced by the same apertures of the weak-lenisng masses,
is fully propagated into the scaling relation analysis. Our
analysis considers both selection effect and weak-lensing
mass calibration. Data analysis is described in section 2;
results are presented in section 3, discussed in section 4,
and summarized in section 5. The paper adopts cosmo-
logical parameters of @, = 0.28, Q,0 = 0.72, and
Hy =70kms~! Mpc.

2 Data analysis

2.1 XXL cluster sample

The parent cluster sample consists of spectroscopically
confirmed X-ray-selected systems of class C1 and C2 drawn
from the XXL second data release (DR2) catalog (see
details; Adami et al. 2018). The C1 class has a high purity
rate (the fraction of false detections is ~5%) with respect
to spurious detections or blended point sources (Adami
et al. 2018). The C2 class consists of fainter, hence less-well
characterized, objects and allows up to 50% contamination
by misclassified point sources. On average, the C2 clusters
have lower masses than the C1 at fixed redshift. The C2
clusters used in this study are those clusters that could be
spectroscopically confirmed by using currently available
galaxy redshifts (from the literature and the XXL spectro-
scopic surveys). Hence, the C2 selection function is, strictly
speaking, currently undefined. This paper uses the 83 C1
and 53 C2 spectroscopically confirmed clusters (for a total
of 136 clusters) found in the region of overlap between
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the HSC-SSP and XXL surveys (25 deg?). This is the same
sample definition used in Umetsu et al. (2020). Umetsu et al.
(2020) measured weak-lensing masses for the 136 XXL
clusters using the HSC-SSP shape catalog (Mandelbaum
et al. 2018a, 2018b). Only galaxies satisfying the full-color
and full-depth criteria from the HSC galaxy catalogue were
used for precise shape measurements and photometric red-
shift estimations. Background galaxies behind each cluster
are securely selected by their photometric redshift prob-
ability distribution, following Medezinski et al. (2018).
The weighted number density of background source
galaxies is 714, 2~ 22.1 arcmin~2. Masses are estimated from
posterior probability distributions obtained assuming a
Navarro-Frenk—White (hereafter, NFW) density profile
(Navarro et al. 1996). The weak-lensing mass range covers
from group scales My ~ 10" M to cluster scales ~6 x
10'"* M. Including the upper bound of the weak-lensing
mass uncertainties, the sample reaches 10" M. Since
the weak-lensing (WL) mass measurement for a low-mass
cluster of O(10" M) is noisy (with a median weak-
lensing S/N of 1.1), Umetsu et al. (2020) validated the bias
and scatter of the weak-lensing mass measurements as a
function of true mass through numerical simulations and
found a mild underestimation weakly depending on the
halo mass. This study uses M{y; and 7Y measurements
and weak-lensing mass calibration from Umetsu et al.
(2020), which is described in sub-subsection 2.4.3. We use
the XXL centers as cluster centers (Umetsu et al. 2020).
To summarize, we use the 136 XXL clusters with 83
C1 and 53 C2 clusters. The weak-lensing mass range is
M3k ~10-6 x 10" M. The redshift range covers an
interval from 0.031 to 1.033. The average and median
redshifts for the entire, C1, and C2 samples are (z.) =
0.38,0.34,0.45 and 2z, mea = 0.30,0.30, 0.43, respectively.

2.2 Stellar mass estimation

We estimate the stellar masses, M,, of red cluster member
galaxies using the photometric data of the HSC-SSP Survey
S19A (Aihara et al. 2019) and the Sloan Digital Sky Survey
(SDSS DR16; Ahumada et al. 2020) as the supplemen-
tary photometric data. We first select red galaxies from
the color-magnitude plane as a function of cluster redshift,
following Nishizawa et al. (2018) and Okabe et al. (2019).
We use the stellar population synthesis model of Bruzual
and Charlot (2003) to estimate stellar masses from the
Wide-layer depth grizy-band photometry at a given cluster
redshift (z.). We adopt a single instantaneous burst at the
formation redshift z = z; (Oguri et al. 2018). We assume
zr = 3 and the Chabrier initial mass function (IMF Chabrier
2003). When we use the Salpeter IMF (Salpeter 1955), the

masses are higher by a factor of ~1.5 than those obtained
with the Chabrier IMF (e.g., Pozzetti et al. 2007). We com-
bine them with spectroscopically identified galaxies selected
by a slice of |z — z.| < 0.01(1 + z.) from public spectro-
scopic redshifts in the HSC-SSP Survey region (Coil et al.
2011; Skelton et al. 2014; Momcheva et al. 2016; Scodeggio
etal. 2018; Aguado et al. 2019). The HSC-SSP photometric
data of some bright galaxies, such as spectroscopically iden-
tified galaxies located in nearby clusters at z ~ 0.1, are
too bright for the 8.2 m Subaru telescope to be saturated
(Aihara et al. 2018b, 2019). Some of them are flagged as
saturated. We use complementary SDSS photometry for the
missing galaxies. Moreover, we visually inspect whether
large bright galaxies are missing in the catalog and add
them if their visual properties are similar to those of galaxies
in the catalog. The number of additional galaxies is only
about twenty in the whole cluster sample. We use cmodel
magnitudes (Lupton et al. 2001) from the HSC-SSP (Bosch
etal. 2018; Huang et al. 2018a) and SDSS photometric data
(Abazajian et al. 2004), which is a linear-combination mag-
nitude derived by the exponential and the de Vaucouleurs
fits, and correct them with extinction. We confirm that the
stellar masses estimated by the HSC and SDSS data agree
with each other. The cmodel magnitude is a good total
flux indicator to use as a universal magnitude for all types
of objects (e.g., Lupton et al. 2001; Abazajian et al. 2004;
Huang et al. 2018a; Bosch et al. 2018). However, it does not
effectively include fluxes from the outer regions of massive
galaxies, such as BCGs, where a diffuse intracluster light
(ICL; e.g., Pillepich et al. 2018) is dominant and accounts
for some fractions of the stellar mass (e.g., Huang et al.
2018b). We discuss this component in sub-subsection 4.1.5.

We then sum up stellar masses of galaxies within the
projected, weak-lensing overdensity radii, 735, of indi-
vidual clusters (Umetsu et al. 2020) from the XXL centers
(Adami et al. 2018). We set the minimum stellar mass to be
10" M. Since the photometric data around bright stars
are masked out, we correct the cylindrical, total stellar mass
by the area fraction (F), which is the ratio of the bright-star-
masked area to total area within the overdensity radius.
We here assume that the galaxies are uniformly distributed.
We next subtract the stellar components associated with
the large-scale structure environment surrounding the
targeting clusters and refer to them as the background
component. The background component is estimated in
an annulus between 2 and 4 Mpc to correct the projection
effect; M = > M(ri < 35 F =3 M (2 Mpe < 7; <
4 Mpc)F;,, where i denotes the ith galaxy within each
region and the background component is also estimated
by taking into account bright star mask corrections (F,).
When we change the background annulus to 3-5Mpc
and 1.5-3.5 Mpc, the stellar masses change only by a few
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percent. We convert the cylindrical stellar masses to the the
spherical stellar masses by a deprojection using the NFW
profile. We assume that the stellar mass density profile
is described by the best-fitting NFW mass density profile
(Umetsu et al. 2020). In the deprojection method, we
separate a central BCG from the satellite galaxies, where
the central BCG is defined by the largest stellar mass galaxy
within 200kpc from the XXL centers. We multiply the
cylindrical stellar mass of the satellite galaxies, M:Y]—MBCG,
by a conversion factor, Dy, which is obtained as the ratio
between the spherical NFW mass within the measurement
radius and an integration of the projected NFW profile
out to the measurement radius. We use the concentration
parameters for individual clusters in the computation of
the conversion factor. The unweighted average of the
concentration parameters is (cis) = 2.8 £1.5. When we
change the concentration by 1, Dy, varies by only £5%.
We then correct the obtained spherical stellar masses by a
stellar mass function to consider the incompleteness of the
stellar mass caused by the minimum cut of 10" Mg. We
assume that the stellar mass function follows a Schechter
luminosity function (Schechter 1976) and adopt the stellar
mass function of quiescent galaxies from the COSMOS
Survey (Muzzin et al. 2013). We find that the correction
factor is C ~ 1 and independent of cluster redshifts, and
we use the single value C = 1.0025 for all the clusters. In
short, the spherical mass estimate is described as

M, = Micg + CDgp (M — Myce) = Mycg + M. (1)

Here, M, is the spherical stellar mass of the satellite
galaxies. We consider both the errors of the stellar mass
of individual galaxies and the errors of weak-lensing

overdensity radii. However, the errors due to weak-lensing

err, WL

eeWh) account for more than 90%

overdensity radii (o
of the total error budget (o), and thus the other error

sources {[(c¢7)? — (o&™WL

)21'/2} are negligible.

2.3 Gas mass estimation

Gas masses within a fixed aperture of 500 kpc for all XXL
clusters were published in DR2 (Adami et al. 2018). In the
present analysis, we consider the gas mass measured within
the weak-lensing overdensity radius (r35). Here we provide
updated gas masses from the XMM-Newton survey data
for the 136 XXL clusters with available WL masses from
HSC (Umetsu et al. 2020). Following Adami et al. (2018),
we reduce the XMM-Newton/EPIC data using XMMSAS
v13.5 and extract count images from all the available
pointings in the [0.5-2] keV band. We use exposure maps
for each observation to take the vignetting effect into
account. We use a large collection of filter-wheel-closed

data to extract models of the particle-induced background,
and rescale the filter-wheel-closed data to match the count
rates observed in the unexposed corners of each observa-
tion. To include all the available data, we create mosaic
images by combining the count images, exposure maps,
and background maps of all observations. To determine the
gas masses, we follow the method presented in Eckert et al.
(2020) and implemented in the public code pyproffit.! For
each cluster, we extract a surface brightness profile by accu-
mulating source counts within concentric annuli around
the cluster center as determined from the XXL detection
pipeline XAMIN (Faccioli et al. 2018). We detect X-ray
point sources using the XXL pipeline and mask them. The
missing area is corrected to compute a surface brightness
profile. The same procedure is applied to the background
maps to create a model background count profile.

We model the three-dimensional gas emissivity profile
as a combination of a large number of basis functions (King
profiles) to allow a wide variety of shapes. The emissivity
profile is projected along the line of sight and convolved
with the instrumental PSF to predict the source brightness in
each annulus. The residual sky background is fitted jointly
to the data. The total model (source + background) is fitted
to the data using the Hamiltonian Monte Carlo code PyMC3
(Salvatier et al. 2016). For more details on the reconstruc-
tion method, we refer the reader to Eckert et al. (2020).

To compute the conversion between emissivity and
count rate, we simulate an absorbed APEC model (Smith
et al. 2001) using XSPEC. Gas temperatures are taken from
the spectral analysis of Giles et al. (2016) and the plasma is
assumed to have a universal metal abundance of 0.25 Zp,
(Anders & Grevesse 1989). We then relate the norm of the
APEC model to the simulated source count rate,

K = 107 / dv (2)
=————-— | nn
APEC = 1 1 2 2 H

with 7. and ny the number density of electrons and
ions, respectively. Finally, the gas mass within the WL
overdensity radii, M; = Mgy, 500, is determined by inte-
grating the reconstructed gas density profile within the
weak-lensing 7s0:

WL

7500
Mg=/ 4517 pgas () d, (3)
0

where pgs = pmy(n. + ny) is the gas mass density,
pu = 0.6 the mean molecular weight, and m, the proton
mass. To propagate the uncertainties to the gas mass,
for each set of posterior parameter values we integrate
M, using equation (3) and randomize the value of the

1 (https://github.com/domeckert/pyproffit).

220z Jaquieldag GO uo Jesn (81sali] Ip 00IWLOUOASY OLOIBAISBSSQ) 81sall] VNI Aq 6GE10S9/S/ L/ L/ ./21onle/lsed/woo dno oiwapeoe)/:sdiy Wwolj papeojumo(


https://github.com/domeckert/pyproffit

180 Publications of the Astronomical Society of Japan (2022), Vol. 74, No. 1

overdensity radius according to the posterior 73 distribu-
tion (see sub-subsection 2.4.1).

2.4 Multivariate scaling relations

We simultaneously estimate the multivariate scaling rela-
tions between weak-lensing mass (M35), X-ray luminosity
(Lx), stellar mass (M,), BCG mass (Mpcg), and gas
mass (Mg) by a Bayesian framework considering both
selection effect and regression dilution bias. The details
are described in appendices 1 and 2. For the description of
this approach see Sereno (2016) and Sereno et al. (2020).
We use the natural logarithm (In) for observables and their
intrinsic scatter. We adopt the Markov Chain Monte Carlo
(MCMC) method. XXL candidate clusters are classified
as C1 or C2 according to total count rate and core size to
avoid contamination of point sources (Pacaud et al. 2006,
2016). The C1 selection can be assimilated to a surface
brightness limit, while the C2 subsample used in this paper
is unconstrained (subsection 2.1).

We approximately use the X-ray luminosity Ly in the
[0.5-2]keV band as a simple selection function instead of
the two parameters of the total count rate and core size, fol-
lowing Sereno et al. (2020). The DR2 catalog (Adami et al.
2018) includes X-ray flux within 60” from the XXL centers
and X-ray luminosity within 750y determined by a mass and
temperature scaling relation based on a CFHTLenS shape
catalog (Lieu et al. 2016). However, since the X-ray lumi-
nosities of 32 clusters out of 136 clusters are not publicly
available, it does not meet the sample size of this paper.
Furthermore, to avoid the systematics inherent in the mass
scaling relation and WL mass measurement, we remeasure
the total X-ray luminosity in the [0.5-2] keV. We first com-
pute the maximum detection radius (7,.c) of each source
as the radius at which the reconstructed surface brightness
is 10% of the locally determined background brightness.
We then integrate the surface brightness within the cor-
responding circular area to measure the total count rate.
Finally, we use XSPEC to compute the conversion between
count rate and luminosity at the redshift of the source,
assuming the source spectrum is described by an absorbed
APEC model, and then we obtain the total luminosity Lx
which is integrated within the maximum detection radius
max- It is important here that the measurement of the X-ray
luminosity does not use external information but X-ray
data alone. The maximum radius 7., is positively corre-
lated with 75 and the scatter is 0.11 dex. When we remove
19 large-offset clusters which have 7., and 735 that differ
by more than twice as much as 735 errors, we find that
the results do not change significantly. This is caused by
the lack of error correlation between 7y, and r35. We
approximately use LxE(z)~! as expected from a self-similar

solution because the measurement radii sufficiently covers
the X-ray dominated region, where E(z) = [Qm0(1 + 2)* +
Qa0]"%. We employ the minimum X-ray luminosity as the
threshold in the regression analysis [equation (A2)]. Since
the measurement radius of Ly is independent of the WL
overdensity radius, there is no error correlation with other
quantities. We introduce the natural logarithmic quantities
for the observables in Bayesian inference, defined as

WL

_ 1 Mo E2) (4)
1014 M,

B Ly E(2)™! N M, E(z) In Mg E(z) In M,E(z)

| 108ergst U102 M, 102 M, T 1012 M, [

(5)

We assume the E(z) dependence expected from the self-
similar solution for all the observables. We refer to bary-
onic observables as y = {y, y., ¥acG, ¥5}. We express the
true values of their observed quantities as capital letters,
X and Y. The observables and true variables are related
by p(x, Y1 X, Y) = N({x, y}I{X, Y}, Z.:), where M and X,
denote a normal distribution and an observational error
covariance matrix, respectively (appendix 1). We aim at
measuring the linear regression with respect to the actual
quantities of X and Y (sub-subsection 2.4.2). The observa-
tional errors of x and y are described by fractional errors
o™ = oy and oy =10/, 0", o5 05} The diagonal
elements in X, are {(o™), (05")*}. The details of the error
covariance matrix are described in sub-subsection 2.4.1.

Redshift dependence in equation (4) can be obtained
for self-similar evolution. Since the critical density p..(z)
H(z)* o« E(z)* and the overdensity radius 500 o¢ ¢/H(z)
E(2)7!, the mass becomes Msop o pr(2)rdy, o E(z)~!. Here,
H(z) is the Hubble parameter at given redshift and c is the
light velocity. Thus, MsoE(z) is independent of redshift.
Assuming that the baryonic mass density is proportional
to the critical density, that is, a constant baryon fraction
against both mass and redshift, we similarly obtain M;E(z)
where i = {*, BCG, g}. Since the soft-band X-ray lumi-
nosity is proportional to the square of the electron number
density (n.) in the volume, Lx o 72[c/H(z)]® o E(z) where
1. X pe(z). Therefore, LxE(z)~' becomes constant against
redshift. We show the result without the E(z) dependence
in appendix 5.

2.4.1 Observational error covariance matrix

The relationship between the actual (X and Y) and observed
(x and y) quantities is expressed by a multivariate Gaussian
distribution with an observational error covariance matrix,
X... The diagonal elements of the error covariance matrix
consists of the variance of the observational errors. The

220z Jaquieldag GO uo Jesn (81sali] Ip 00IWLOUOASY OLOIBAISBSSQ) 81sall] VNI Aq 6GE10S9/S/ L/ L/ ./21onle/lsed/woo dno oiwapeoe)/:sdiy Wwolj papeojumo(



Publications of the Astronomical Society of Japan (2022), Vol. 74, No. 1 181

error correlation in the off-diagonal elements of the error
covariance matrix is expressed by the subscript combina-

tions of 7{ oo between the 7 and j components, where
ri is the error correlation coefficient with 4, j = {WL, [,
%, BCG, g}. The error correlation coefficient, 7;f, describes

an error propagation by the same measurement radii of the
weak-lensing, stellar, and gas masses because the stellar and
gas masses are computed within the spherical overdensity
radii (r¥%) of the weak-lensing masses (Umetsu et al. 2020).

We first estimate the error correlation coefficient, 7} ,,
between the weak-lensing mass and the stellar mass. Since
member galaxies are sparsely distributed, the errors of
the weak-lensing masses randomly affect the stellar mass
estimations in the individual clusters and it is difficult
to measure individual error correlations independently.
We therefore use the same correlation coefficient, 7§y ,,
estimated by the whole sample of clusters. We randomly
pick up the overdensity radius by drawing values according
to the posterior distributions of weak-lensing overdensity
radii for the individual clusters. We correspondingly
measure stellar masses within the given radii and then
evaluate the error correlation coefficient by combining
all the clusters. The number of realizations is 1000 for
each cluster. We find r{; , = 0.873. The error correlation
between Mpcg and M., is negligible because the error of M,
is mainly due to the weak-lensing overdensity radii.

Since the gas mass density is smoothly distributed, we
easily obtain the correlation coefficient of measurement
error ry; , between the weak-lensing mass and the gas mass
for 1nd1v1dual clusters. We employ the same method as the
estimation of 7§ ,. The average correlation coefficient for
the whole sample is (r{; ,) = 0.908.

The measurement errors for the stellar mass and the
gas mass are also correlated through the same overdensity
radii. It is, however, difficult to measure 7{"; for individual
clusters because the sparse distribution of the member
galaxies makes it difficult to estimate individual error
correlation coefficients. We therefore estimate r{; by a
trigonometric formula (e.g., Rousseeuw & Molenberghs
1994) which is derived from the definition that the determi-
nant of covariance matrix must be positive The expected

err err
\/ 1= (ry1. \/ 1-
err err err _ err 2 W{
Teg = TWLATWLg T \/1 (rWL.« \/1 (r§Lg)*- hen we

uniformly and randomly pick up values within the

range of e IS TWLL WL —

ranges, the average result approximates mean value,
e = "WL."WLe We therefore adopt the mean value,
"\t g for individual clusters to derive the regression
parameters, and then incorporate the results with the lower
and upper bounds of the trigonometric formula into the
parameter errors. The average value for whole sample is

< err err

§1.."wg) = 0.793. The lower and upper ranges of 7'

increase the measurement error of the intrinsic correlation
coefficient between M, and M, by ~ 100%, while the other
parameters are insensitive. If we set 7, , = 0, an acceptance
ratio of the MCMC chain becomes close to zero and the
parameters cannot be constrained because it does not
satisfy the condition of the error correlation matrix.

2.4.2 Linear regression and intrinsic covariance
The linear regressions between the actual quantities (X and
Y) and a true mass (Z) are described by

Xz =ax+ BxZ, (6)
Y, =a+BZ, (7)
where Z = In [M500E(2)/10" M] is the logarithmic value

of the true mass, ax and a are the normalizations, and By
and B are the slopes of the mass dependence. We consider
the intrinsic covariance matrix, X;,, (Okabe et al. 2010),
which describes the statistical properties of cluster bary-
onic components. The diagonal elements of the intrinsic
covariance are specified by fractional scatter 0} = oy, and
oy = {0}, 07, 0icg, 0 ). The intrinsic correlation coefficient
in the off-diagonal elements is expressed as the correlation
7;,; between the i and j components, where i, j = {/, *, BCG,
g} Since it is difficult to constrain the intrinsic correlation
coefficient associated with the weak-lensing mass, we fix
rwL; = 0. We use flat prior for the parameters.

We also consider a single Gaussian distribution of
p(Z) as a parent population of Z in the Bayesian analysis
in order to correct both regression dilution effect and
selection effect (appendix 1). The parent population
p(Z) is simultaneously determined by the scaling relation
between the total X-ray luminosity and the mass, where
the X-ray luminosity is approximately the tracer of the
cluster finder. It also can be determined by weak-lensing
masses with the mass calibration, which is discussed in
sub-subsection 4.1.2. Due to the cosmological dimming
of X-ray emission, we expect that more massive clusters
can be found at higher redshift (Sereno et al. 2020). We
therefore introduce a redshift dependence of the parent
= Npz(z),

and standard deviation are described by

population, p(Z, z) 0z(z)], of which the mean

nz(z) =uzo + yu, In E(2), (8)

02(2) =020E(2)"7, 9)

where y,, and y,, are the redshift dependence of the
mean and standard deviation, respectively. The parame-
ters of p(Z, z) are non-informative, hyper-parameters and
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are simultaneously derived by the Bayesian analysis. Thus,
the result of multivariate scaling relations is independent of
the cluster number counts and of the cosmological param-
eters. We note that o2(z) is important to determine the
slopes accurately by considering the regression dilution
effect (appendices 1 and 2). Although we tried to fit using
double Gaussian distributions of the Z distribution, we
could not constrain the parameters of the second Gaus-
sian component. Thus, the single p(Z, z) is sufficient for
this analysis. Other possibilities, including no-redshift evo-
lution of p(Z), will be discussed in sub-subsection 4.1.2.

2.4.3 Weak-lensing mass calibration

The parameters awr, Bwr, and ow. describe our weak-
lensing mass calibration. Weak-lensing mass estimates for
individual clusters are scattered from their true values
because of their non-spherical halo shape, substructures,
and surrounding large-scale structure (e.g., Hoekstra 2003;
Becker & Kravtsov 2011; Oguri & Hamana 2011; Okabe
et al. 2016; Umetsu 2020). Moreover, even when averaged
over many clusters, their ensemble mass estimates can be
biased, if the true mass profiles deviate from the assumed
profile (e.g., Umetsu et al. 2020). Umetsu et al. (2020)
validated their weak-lensing mass estimates for cluster and
group scales using both cosmological numerical simula-
tions (McCarthy et al. 2017, 2018) and analytical NFW
models, and found that the weak lensing mass bias weakly
depends on true masses. In our multivariate regression
analysis, we consider the bias and the scatter between the
weak-lensing mass, M5, and the true mass, Msqp.

Umetsu et al. (2020) and Sereno et al. (2020) only
accounted for the +5% calibration uncertainty due
primarily to observational systematics in their observable—
mass scaling relations. In their mass forecasting for the
M;00—Tx relation, Umetsu et al. (2020) applied an addi-
tional constant mass-modeling bias correction of —11%
evaluated at the mean mass scale of the XXL sample.

We characterize the mass dependence of the NFW
weak-lensing mass estimates, or the M{;—Msgo relation,
using the results of Umetsu et al. (2020) based on syn-
thetic weak-lensing observations of 639 cluster halos
in the dark-matter-only run of BAHAMAS simulations
(McCarthy et al. 2017). As shown in figure 1, the mass
bias increases with true mass in the regime of low masses
and it is nearly constant in the high-mass range (M;sgo
> 10" M@/b). This can be approximated with a tanh
functional form. We fit the data with a functional form of
M¥L/ Msgp = a tanh Msg/b + ¢ and the intrinsic scatter of
ow. We finda =029+ 0.06, b = 1.57"03%, ¢ = 0.7375:9¢,
and oy = 0.21 £ 0.02 (orange region in figure 1).

However, the mathematical formulation in the regres-
sion analysis (appendix 1) requires a power-law relation
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Fig. 1. Weak-lensing mass calibration. Red circles denote the the average
mass bias at each mass bin from Umetsu et al. (2020). The solid
blue line and regions denote the estimate and the 1o uncertainty for
the power-law relation (In Mvgo = awL + BwL In Msgg), respectively. The
orange region is the 10 uncertainty for the function of /ngo//v‘soo =
atanh Mkoo/b+ c. The green horizontal line expresses no bias. The black
squares are the results of simulated clusters (Umetsu et al. 2020). The
top and bottom panels display data and result on a linear scale and a
logarithmic scale, respectively. The tanh form better describes the data.
(Color online)

between the true mass and weak-lensing mass, or a linear
relation between their logarithmic quantities. We here
assume equation (6) and find aw; = In(0.89 + 0.02),
BwL = 1.09 £ 0.02, and oy = 0.21 & 0.02 for the mean
relationship between the weak-lensing mass and the true
mass, as represented by the blue line in figure 1. This
result agrees with that of the tanh function within the 1o
uncertainty at MsooE(z) S 1.5 x 10 Mg.

We wuse a trivariate Gaussian distribution of
Niplawr, Bwe, Inowr) as a prior for the weak-lensing
mass calibration. The covariance matrix in A5p employs
the error covariance matrix of the linear regression in the
power-law mass calibration. Therefore, all the mass cali-
bration uncertainties are propagated into the results. We
discuss a case of the tanh function in sub-subsection 4.1.3.

3 Results

3.1 Normalization and slopes of scaling relations

The Bayesian framework straightforwardly derives the
normalization, slopes, and intrinsic covariance of the
multivariate scaling relations. The number of parameters
is 25 including four hyper-parameters. We use biweight
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Table 1. Resulting regression parameters of the scaling
relations between the cluster quantities (M5, Lx, M.,
Mgcg, and My) and the true mass Msy for the 136 XXL
clusters.”

o B Oint
MYGEGR)  —0a1R0RT LostRRt 0210
LxE(z)~! 0297013 1387047 0.73%013
M.E(2) 0767505 0.85+042 0.52+0.09
MgcGE(z) —0.92798 0.49%01 0.70%0.08
MgE(z) 1.95¥505 1.291948 0.39+908

*The normalization, «, and the slope, B, are defined by the linear
regressions [equation (A18)]. The intrinsic scatter at a fixed true mass
is represented by oin¢.

The results using a trivariate Gaussian prior as the WL mass calibra-
tion, as described in sub-subsection 2.4.3. The errors denote the 1o

uncertainty.
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Fig. 2. Gas mass and weak-lensing mass relation. The solid blue line
and region denote the estimate and the 1o uncertainty for the scaling-
relation baseline, respectively. The black and white circles are the C1
and C2 subsamples, respectively. The red and green ellipses represent
the 68% confidence levels for the stacked quantities of the subsam-
ples of the C1 and C2 clusters which are sorted by the X-ray luminosity,
respectively. Filled and open ellipses are those weighted with the covari-
ance matrix ¥ = Xerr + Zint and Zerr, respectively. The stacked quanti-
fies follow the resulting baseline well. (Color online)

estimates of marginalized posterior distributions as the
parameter estimates.

The estimated normalizations and slopes for the Lx—M,
M,-M, M,-M, and Mpgcg-M relations are shown in
table 1. The posterior distribution is shown in appendix 4
(figure 15). The slope of the X-ray luminosity, 1.38%)7,
is 2.10 higher than the prediction of the self-similar

model (8 = 1). Figures 2, 3, and 4 show the resulting
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Fig. 3. Stellar mass and weak-lensing mass relation. The solid blue line
and region denote the estimate and the 1o uncertainty for the scaling-
relation baseline, respectively. The black and white circles and the red
and green ellipses have the same meaning as figure 2. (Color online)

scaling relations of the gas, stellar, and BCG masses with
the weak-lensing masses (Mjs; Umetsu et al. 2020),
respectively. The scaling relations shown in the figures
are described by Y; = a — (B/BwL)awr + (B/BwL) Xz. For
comparison, we also plot the direct observables and the
stacked observables sorted by the X-ray luminosity. We did
not fit using the stacked observables. We stack 18 clusters
in each subsample in ascending order of the C1/C2 X-ray
luminosity, and the numbers of the remaining C1 and C2
clusters in the highest luminosity subsamples are 11 and 17,
respectively. Since the stacked quantities are sorted by the
X-ray luminosity, the subsample grouping is independent
of any observables in the x-axes of figures 2—4 or the y-axes
of figures 3 and 4. The stacked quantities are computed by

D (=) M, (10)

where v = {x, y}, X is the error matrix, X, or the composi-
tion matrix of X + X, for v, and # is the nth cluster. The
mean observables, weighted with the error matrix, show
some scatter around the scaling-relation baselines, which
exhibit intrinsic scatter. Such a feature is visible especially
in the Mpcg—M relation with the largest intrinsic scatter.
We thus weight them with the composition matrix for com-
parison with the baselines shown in blue in figures 2—4, and
find that the stacked quantities are in good agreement with
the baselines. It also indicates the consistency of Bayesian
inference among e, B, and X;, to explain the data.
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Fig. 4. BCG mass and weak-lensing mass relation. The solid blue line
and region denote the estimate and the 1o uncertainty for the scaling-
relation baseline, respectively. The black and white circles and the red
and green ellipses have the same meaning as figure 2. Since the mea-
surement errors of the BCG mass are much smaller than those of the
WL masses, the shapes of the stacked quantities weighted with Ze(r
become lines along the x-axis. (Color online)

We find that the slopes in the M o—Msoo and M,—M;spo
relations are 1.297015 and 0.85) 35 steeper and shallower
than the self-similar predictions (8 = 1), respectively.
The significance levels of the deviations from unity are
~3 0 and 1.50, respectively. We find a shallower slope,
Brce = 0497010, in the Mgcg—Msq relation, which indi-
cates that the BCG stellar mass has only a weak dependence
on the halo mass.

3.2 Parent population

The resulting regression parameters for the parent

. 0.20 0.68
population are pzo=—1.02%50, v., =3.53%8, 0z0
=1.21%03%, and y,, = —2.38")85. The mean mass and the

standard deviation of the parent population increases and
decreases with increasing redshift, respectively. Thus, the
more massive clusters at higher redshifts are discovered by
the XXL Survey, as expected due to the X-ray dimming
effect. The mass distributions at lower redshift are broader
than those at higher redshift, indicating that it is easier to
find clusters from a broad mass range at lower redshift.

3.3 Baryon fractions

We convert the resulting scaling relations to the baryon,
gas, and stellar fractions as a function of the true halo
mass (Mso) not the weak-lensing mass (MJ}), fi =

—— fp this work
—— fu this work
—— fg this work

ot _////
\_ 101

10]3 10'14 10]5
Msp0E(2) [Mp)

1,/ Planck 20

Fi( 0/ Q)™

1024

Baryon, gas, and stellar mass fractions

Fig. 5. Baryon (blue), gas (green), and stellar (red) mass fractions as a
function of the halo mass. The shade regions are the 10 uncertainty.
The orange horizontal line is ©,/Qm (Planck Collaboration 2020). (Color
online)

M;(< 7500)/Msoo(< 7500), where i = {b, g, *} and rso is
the overdensity radius of the true mass. Since the base-
lines, Y(< r35), are computed by using M,(< r35) and
M, (< r¥t) measured within the WL overdensity radii 75,
we convert to those measured within 75o9. The details are
described in appendix 3. The aperture correction depends
on the baryonic mass density slope, the mass calibration,
and the true mass [equation (A16)]. As for the stellar mass
profile, we assumed that the stellar mass density profile fol-
lows the dark matter profile with the average concentration
parameter (cy5) = 2.8 (subsection 2.2). We assumed the
King model of the electron number density follows 7, o 7~3#
with 8 = 2/3 outside gas cores (subsection 2.3). The stellar
mass normalization with the aperture correction becomes
~1.05, ~1.02, and ~0.99 times that without the correction
at MsoE(z) ~ 10" M@, ~10"* M, and ~10"° M@, respec-
tively. As for the gas mass, the aperture correction changes
the normalization by ~1.09, ~1.04, and ~0.97 times at
M;s0E(z) ~ 108 M@, ~10™ Mg, and ~10" Mg, respec-
tively. Figure 5 shows the resulting baryon, gas and stellar
fractions. Since the power-law mass calibration is validated
in the true-mass range of 103 M < MseoE(z) < 10" Mg,
the lower and upper bounds of the x-axis in figure 5 are set
to be 10" M and 10" M, respectively. This fully covers
the true mass population at 0 < z < 1. We do not show
the observables in the same figure because the quantity in
the x-axis is not the weak-lensing mass but the true mass.
Although the true masses can be statistically calculated by
the mean relationship of the weak-lensing mass calibration
[equation (6)] and its intrinsic scatter, an actual weak-
lensing mass bias or true mass for each cluster is unclear.
The uncertainties in figure 5 fully take into account
the error covariance matrix of the linear regressions.
The gas mass fraction, f, = My(< 7500)/Mso0, increases
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Fig. 6. BCG mass to total stellar mass ratio as a function of halo mass.
The solid red and orange lines are the simulations of Pillepich et al.
(2018) and Henden et al. (2020), respectively. We recompute Mgcg/ M.
from the M,-M and Mgcg—-M lines (Chiu et al. 2016a), shown as the solid
green line. (Color online)

as the halo mass increases, reaching 90% of €,/Qn
= 0.1564 + 0.0016 (Planck Collaboration 2020) at
M;s00E(z) ~ 10" M. In contrast, the stellar mass fraction,
fr = M..(< 7500)/Ms00, decreases as the halo mass increases.
These treads are the same as the slope deviations from
unity in the scaling relations (subsection 3.1).

The total baryon mass fraction, f, = f, + f., is ~50%
of Q,/Qm at MspE(z) ~ 10" Mg, ~60% at ~10'* M,
and ~100% at ~10" M. The mass-dependent slope of
fo on group scales of <10 M, is less steep than that on
massive clusters of >5 x 10'* M.

When we use the Salpeter IMF, the baryon and stellar
mass fractions at ~10" Mg are ~1.2 and ~1.5 times
higher than those derived by the Chabrier IMF, respec-
tively. At ~10'* M, the baryon fraction increases only by
~1.1 times. The overall trends do not significantly change
as a result of the choice of IMF.

3.4 BCG mass to total stellar mass ratio

We compute the BCG stellar mass to total stellar mass ratio
as a function of the true mass (figure 6) from the Mpcg—M
and M,—M relations. Since the BCG stellar mass measure-
ment is independent of the weak-lensing overdensity radius,
it is independent of the aperture correction. Since the errors
of the linear regressions are correlated with each other, the
error covariance matrix is taken into account to compute
the errors of the ratio. The fraction of the BCG in the total
mass is at most ~10% at MsoE(z) ~ 10" M and ~20%
at ~10"* M. However, the fraction at ~10"* M accounts
for ~45%. Therefore, the BCG is a more dominant com-
ponent of the stellar mass components on a group scale.

Table 2. Intrinsic covariance for the 136 XXL clusters
(Lx, M*, Mgcg, and Mg).*

LxE(z)"! M,E(z) MpcGE(z) MgE(z)
LxE(x)7'  0.73%04F  0.07M00s  0.08700 0287013
M,E(z) 0.207033  0.527007 0247007 0.0470 2
MpccE(z) 0187018 0.677005  0.7070:5¢  0.0370:9¢
MgE(z) >0.97 0.241031  0.16701]  0.3910:08

*The diagonal elements, the lower triangle elements, and the upper triangle
elements represent express the intrinsic scatter (oj,y,), a pair correlation
coefficient (r;), and an off-diagonal element of the intrinsic covariance
(7,701 y; Ol v; ) respectively. The errors and the lower bound denote the

1o uncertainty and the 1o lower limit, respectively.

3.5 Intrinsic covariance of baryon contents

Another important property of the multivariate scaling
relations is the intrinsic covariance. Table 2 describes
the resulting intrinsic covariance (see also table 1). The
diagonal element, the lower off-diagonal element, and the
upper off-diagonal element are intrinsic scatter, a pair
correlation coefficient, and an off-diagonal element of the
intrinsic covariance at fixed cluster mass, respectively. The
posterior distribution is shown in appendix 4 (figure 16).
The intrinsic scatter in gas mass is o, = 0.39700%,
corresponding to ~0.17 dex. The intrinsic scatter in the

stellar mass, o, = 0.527007 ~0.23 dex, is larger than o,.

The intrinsic scatter of the BCG mass is opcg = 0.707008 ~
0.30 dex. The largest intrinsic scatter is in BCG stellar
mass, followed in order by stellar mass and gas mass;
04 < 0. < opcg. The scatter trend is visually confirmed
in figures 2-4. The error-covariance-weighted means for
the subsamples binned by the X-ray luminosity show some
scatter in the scaling-relations (figures 2—4). Comparisons
of numerical simulations and other observations are
discussed in section 4.

We find strong intrinsic correlation coefficients between
stellar mass and BCG mass and between X-ray luminosity
and gas mass; 7.pcc = 0.70700¢ and 7, > 0.97. Other
intrinsic correlation coefficients agree with no correlation

e . _ +031 _ +0.17
within the errors; 7., = 0.2473;, and rpcg, = 0.16755.

We also explored the possibility that a spurious positive or
negative correlation could be caused by a finite sampling
size. We assess an accidental probability that 136 random
pairs give the observed intrinsic correlation coefficient, fol-
lowing Okabe et al. (2010). The accidental probability,
P(r = |ri;l), is specifically defined as follows; the corre-
lation coefficient of the two random variables in a sample
of 136 drawings is higher than the absolute value of the
intrinsic correlation coefficient. This corresponds to a prob-
ability of the null hypothesis that the two variables do not
correlate with each other. The resulting maximum p-values
are P(r > |r.pcal) ~ O(1075), P(r > |r.l) ~ 3 x 1071,
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P(r = Irpcagl) ~ 4 x 10!, and P(r > |714]) ~ 0. respec-
tively. We therefore reject a possibility of the accidental
correlation between Mycg and M, and between Lx and M,.

We also study the intrinsic correlation coefficient
between BCG stellar mass and satellite galaxy mass defined
by M, = M, — Mycg. The intrinsic correlation coefficient,
raccc = 0.51701% is significant. We find that the intrinsic
correlation coefficient between My, and M, is consistent

with no correlation; 7, , = 0.43%03.

3.6 C1 and C2 subsamples

Our sample comprises 83 C1 and 53 C2 clusters from the
XXL DR2 sample (Adami et al. 2018). We here split the
whole sample into the C1 and C2 subsamples. Since the
mean luminosity for the C2 sample is lower than that for
the C1 sample (Adami et al. 2018), we set the maximum
threshold in Ly as the highest X-ray luminosity among the
C2 sample in the Bayesian analysis. Even when we remove
the upper bound of the X-ray luminosity, the results do not
significantly change. The resulting regression parameters for
the C1 and C2 subsamples are shown at the top of table 3.
The baryon fractions for the whole sample agree with those
for the C1 and C2 samples (figure 7), except for the low-
mass end of the M,—M relation. The gas fractions between
the whole sample and the C1 sample and between the whole
sample and the C2 sample differ by ~1.10 and ~1.50 at
10" M, respectively. This small discrepancy is caused by
the steeper C1 and C2 slopes of the M,—M relation. When
we fix the unconstrained intrinsic scatter, o, for the C1 and
C2 samples with o, = 0.39 obtained by the whole sample,
we find that they agree within 1o. The determination of the
slopes is associated with the intrinsic scatter.

The intrinsic covariances for the two subsamples are
similar to those for the whole sample of clusters (top part
of table 4). In particular, we recover in both subsamples
the order of the intrinsic scatters (0, < 0, < opcg) and
positive correlation coefficients . gcg and 7y ,. The intrinsic
scatter of the total and BCG stellar components in the C2
sample is larger than that in the C1 sample. The differences
of o, and opcg are at 3.30 and 4.10 levels, respectively.

3.7 Subsample with central radio sources

We split the sample into clusters with and without central
radio sources associated with AGN. We search for central
radio sources within 60” from the BCGs using the Faint
Images of the Radio Sky at Twenty-centimeters (FIRST)
(White et al. 1997) and TIFR GMRT Sky Survey (TGSS)
(Intema et al. 2017) surveys. We find central radio sources
in 34 clusters. The fraction of central radio sources is
0.25 and almost constant over the redshift. Average
fractions to include radio sources within 60” from random

Table 3. Best-fitting scaling relations for the 83 C1 clusters,
the 53 C2 clusters, the 102 non-radio-AGN (NR) clusters, and
the 34 radio-AGN (R) clusters.”

o B
C1 MY¥EE(2) —0.1175:92 1.097001
LxE(z)! 0.30*0 13 173153
M,E(z) 0.78+0:88 0.8970-1%
MpcGE(2) —0.93*003 0.53513
MgE(z) 1974018 1481038
Cc2 MY¥EE(2) —0.1175:92 1.08F0051
LxE(z)"! 0.11+523 1.65%033
M.E(2) 0.607017 0.92+01
MgcGE(z) —-1.02+5-17 0.53*0-18
MgE(2) 1.87°01 1.5015:3
NR MYLE(2) —0.1179051 1.0975:031
LxE(z)™! 0.32497% 1487033
M.E() 0.75+049 0.917:15
MgcGE(2) -0.9210-10 0.547013
M,E(2) 1967515 1374048
R MY E(2) — 0112553 109503
LxE(z)"! 0.03%93% L7165
M.E(z) 0.72+57% 0.8745%%
MgcGE(2) —-0.9270-1) 0.387017
MgE(2) 1.88%017 1427530

*The normalization, «, and the slope, 8, are defined by the linear regressions
[equations (6) and (7)].

The results using a trivariate Gaussian prior as the WL mass calibration, as
described in sub-subsection 2.4.3. NR and R expresses “non-radio-AGN”
and “radio-AGN,” respectively. The errors denote the 1o uncertainty.

---- whole sample /4 Planck 20

L1o!

C1 sample

Gas, stellar, and BCG mass fractions

10' 1014 10%
M0 E(2) [Mg)

Fig. 7. Gas (green), total stellar (red), and BCG (magenta) mass frac-
tions as a function of halo mass. The solid, dashed, and dotted lines
denote the Bayesian estimation for the C1 clusters, the C2 clusters,
and the whole sample, respectively. The filled and hatched regions
denote the 10 uncertainties for the 83 C1 clusters and the 53 C2 clusters,
respectively. (Color online)
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Table 4. Intrinsic covariance for the 83 C1 clusters, the 53 C2 clusters, the 102 non-radio-
AGN (NR) clusters, and the 34 radio-AGN (R) clusters.”

LxE(z)"! M.E(2) MgccE(2) MgE(2)

C1 LxE(z)~! 0.387033 —0.027908 0.0175:9¢ 0.0670: 8
M.E(2) —0.157045 0.3670:9 0.0670:9% ~0.01997
MpcGE(?) 0.0470-22 0.31701% 0.5470:93 ~0.01790

ME(2) >0.82 -0.1279¢} ~0.137939 <0.38
2 LxE(z)~! 0.2570.4 ~0.05790¢ ~0.041008 0.0370:03
M.E(z) —0.3179%3 0.6670:05 044101 —0.01790
MpcGE(z)  —0.22703% 0.78+0:05 0.8710:04 —0.0179%7

MgE(2) 0.7140:43 —0.061933 —0.06107%% <0.21
NR  LxE(z)! 0.70057 0.02105 0.070 15 0.25M 10
M.E(z) 0.07703% 0497049 0257003 0.02400¢
MgpcGE(z) 0167037 0.6870%% 0.74700% 0.0340:0%
0.40 0.20 0.11
MgE(z) >0.95 0.117939 0.12+920 0.38011
- 0.21 0.07 0.07 0.05
R LxE(z)™! 0.31704 ~0.01+3:%7 ~0.02+0:97 0.047905
0.37 0.11 0.08 0.05
M.E(z) —0.047077 0.50%94% 0.13%0:08 ~0.00"0:93
0.37 0.13 0.09 0.04
MpgcGE(2) —-0.13%737 0.53%035 0.53% 007 —0.03003
ME(R) 08391 0028 027%% 07l

*Each column is the same as in table 2.

positions and random galaxies the z-band magnitudes
of which are brighter than 20 ABmag are only 0.04
and 0.09, respectively. It is difficult to identify whether
radio sources are associated with cluster members or
not because of their extended distribution and a lack of
their redshifts. A visual inspection of radio sources and
optical distribution suggests that a contamination of radio
overlapped at different redshifts is small. Even when we
exclude two clusters with central radio sources that have
a possibility of being overlapped with point sources at
z ~ 1-1.5, we find consistent results.

We repeat the Bayesian analysis for the two subsamples
with and without central AGNs. We refer to the former and
latter samples as radio-AGN (R) clusters and non-radio-
AGN (NR) clusters, respectively. The resulting regression
parameters for the 34 radio-AGN clusters are similar to
those of the 102 non-radio-AGN clusters (bottom part
of table 3). Since the errors are large, it is difficult to
discriminate between the two subsamples, as shown in
figure 8. The intrinsic covariance between the baryon
components for the two subsamples are similar to those
for the whole sample of clusters (bottom part of table 4).

3.8 Redshift evolution

We next investigate the redshift evolution of the baryon
budget. We here define the observables independent of
redshifts, as follows:

Mso

= whole sample Qp/m Planck 20

F10'

w/ central radio source

L w/o central radio source

Gas, stellar, and BCG mass fractions

IDI:I 1["” 101':
M2 (Z) [f\/-'[@]

Fig. 8. Gas (green), total stellar (red), and BCG (magenta) mass frac-
tions as a function of halo mass. The solid, dashed, and dotted lines
denote the Bayesian estimation for the 34 radio-AGN clusters, the 102
non-radio-AGN clusters, and the whole sample, respectively. The filled
and hatched regions denote the 10 uncertainties for the 34 radio-AGN
clusters and the 102 non-radio-AGN clusters, respectively. (Color online)

Lx M,
y =

Mgce M,
1 1 1 1 .
0% ergs1 102 M, ’

nlolz M, nlolz M,
(12)

We assume the following redshift dependence of the scaling

relations,

_ E(z)
YZ_oz+ﬂZ+yln[E(0'3)], (13)
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Table 5. Regression parameters of the scaling relations with
redshift evolution.”

o B 14
M5 R A 0]
Lx 0.337014 1.28%022 2]
M. 0751013 0.80%01; ~0254535
Mpce ~1.03%0:13 0.417015 ~0.06703;
M e T T

*The normalization, e, the slope, B, and the redshift evolution, y, as a function
of the true mass are defined by the linear regression [equation (13)]. The
square bracket denotes the fixed value.

fResults using a trivariate Gaussian prior as the WL mass calibration, as
described in sub-subsection 2.4.3. The errors denote the 1o uncertainty.

with Z = log(Msn/10" M). We repeat the Bayesian
analysis for the multivariate scaling relations. We assume
that the redshift dependence of the Lx—M relation follows
a self-similar solution with y; = 2 in equation (13) to
infer the redshift-dependent parent population p(Z, z).
Table 5 summarizes the resulting regression parameters.
The resulting normalization and mass-dependent slopes are
in good agreement with those for the self-similar redshift
evolution (table 1). We find no redshift evolution in the
M,—M, Mgcg—-M, and M,—M relations which agrees well
with the self-similar redshift evolution y = 0.

4 Discussion

4.1 Systematics

We recall the method of the multivariate-scaling-relations
analysis of the baryon components. We set the vectors
of baryons in y, weak-lensing mass in x (subsection 2.4),
and the error covariance matrix (sub-subsection 2.4.1).
The weak-lensing mass and true mass are statistically
related through a power-law relation with intrinsic
scatter based on a prior motivated by numerical sim-
ulations (sub-subsection 2.4.3). Our Bayesian method
(sub-subsection 2.4.2) simultaneously computes the linear
regression parameters (e and B), the intrinsic covariance
(Xine), and the parent population of the true mass [p(Z, 2)].
In the regression analysis, it is vitally important to control
regression dilution effect and selection effect (see details in
appendix 1). The two effects are simultaneously calibrated
by the estimated parameters of the assumed parent pop-
ulation (sub-subsection 2.4.2 and appendix 1). The shape
of the parent population depends on the weak-lensing
mass distribution as well as the X-ray luminosity which is
used as an approximated tracer of our cluster finder. This
subsection discusses possible sources of systematics in the
Bayesian regression analysis.

4.1.1 Performance of Bayesian analysis

We assess the reliability of our Bayesian analysis using
mock simulations computed with the error matrix similar
to the observational one (see details in appendix 1). We
define a multiplicative error and an additive error in the
relation 0 upu = 72 X Oinpue + ¢, Where 0,5, and 0 oy are
the input and the output parameters. The resulting multi-
plicative and additive errors in the simulation of p(Z, z) are
(m) = 0.989 + 0.018 and (¢) = —0.004 + 0.011 averaged
over all the parameters, indicating that our code recovers
the input parameters well. The uncertainties for the
estimated parameters of the multivariate scaling relations
are larger than the accuracy of the recovery of the input
parameters. In the case of the large measurement errors
of the weak-lensing masses, it is important to consider the
error correlations carefully and fully. If larger errors of two
observables are not correlated, it is difficult to constrain the
intrinsic covariance (figure 14 in appendix 1). The stacked
observables sorted by X-ray luminosities and inverse-
weighted with X, + X, (figures 2—4; subsection 3.1) are
in good agreement with the baselines described by a and
B, which ensures the consistency between the independent
regression parameters to represent the data.

4.1.2 Parent population

We employed the Gaussian distribution for the parent
population, p(Z, z), for the logarithm of the true mass. This
functional formulae differs from the XXL X-ray luminosity
function (Pacaud et al. 2016; Adami et al. 2018; Valotti
et al. 2018). We infer the shape parameters [uz(z) and
o02(2)] of p(Z, z) by the hierarchical Bayesian modelling,
which keeps a flexibility to describe approximately an
unknown parent population or a halo mass function of
Tinker et al. (2008). It effectively corrects both the regres-
sion dilution effect and the selection bias (see appendices 1
and 2). Furthermore, our results are not affected by cluster
mass function or the tension in oy measurements between
the Planck early universe experiment and nearby universe
observations (Pratt et al. 2019). We emphasize that the pur-
pose to introduce p(Z, z) is not to constrain cosmological
parameters or to determine the mass function accurately,
but to correct the above two effects in the analysis of the
multivariate scaling relations (appendices 1 and 2).

The XXL selection function behind the XXL cluster
catalog uses the actual surface brightness profile, namely,
core radius and total count-rate, to avoid contamination
by X-ray point sources (Pacaud et al. 2016; Adami et al.
2018; Valotti et al. 2018). The total X-ray luminosity
is computed by integrating the X-ray surface brightness
distribution. We can easily infer o7(z) and uz(z) through
the Lx—M relation, which is sufficient to constrain the
regression parameters of the baryon contents for the
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whole sample p(Yy|Z)p(Z)

§ {> whole sample p(Yy|Z, 2)p(Z, z)
0 f C1 sample p(Yy|Z, z)p(Z, z)
C2 sample p(Yy|Z, z)p(Z, z) E

X-ray luminosity : LxE(z)7! [ergs™!]

1 1.2 1.4 1.6 1.8 2
E(2)

Fig. 9. X-ray luminosity versus E(z). Black and white circles are the
C1 and C2 clusters, respectively. The colored regions denote the stan-
dard deviation ranges of the X-ray luminosity population expected by
the resulting parent population of true mass p(Z2). The solid lines are
the mean of the X-ray luminosity population. The orange area is the
redshift-independent case of p(Yy|Z, 2)p(2). Blue, red, and green colors
are the whole, C1, and C2 samples with the redshift-dependent case of
p(YolZ 2)p(Z, 2). (Color online)

current sample, as seen in figures 2—4 and appendix 1.
To measure the p(Z, z) distribution accurately, we could
use multiple Gaussian distributions with different weights.
However, when we used the double Gaussian distribution,
we were not able to constrain the parameters of the second
Gaussian distribution (sub-subsection 2.4.2). Therefore,
the single Gaussian is sufficient to describe the multivariate
scaling relations for the current sample. With a larger
sample of clusters and/or small measurement errors of the
weak-lensing masses, we would require a more sophisti-
cated model, such as the cluster mass function combined
with the XXL selection function.

Since the X-ray selection is affected by cosmological
dimming and the selected cluster masses depend on the red-
shift, we introduced the redshift-dependent mean uz(z) and
standard deviation oz(z) of p(Z, z) as hyper-parameters.
Figure 9 shows the resulting X-ray luminosity population
as a function of E(z) which is computed by p(Yy|Z,
2)p(Z, z). The resulting models of the X-ray luminosity
population estimated by the true mass distributions of p(Z,
z) agree with the data distribution. The resulting models
indicate that the XXL cluster catalog covers a wide range
of X-ray luminosities at low redshifts and comprises only
the most X-ray luminous clusters at high redshifts. The
X-ray luminosity population for the C1 clusters is shifted
to a higher value compared to that for the C2 clusters. The
whole X-ray luminosity population is distributed around
the intermediate position between the two C1 and C2
X-ray populations.

As an alternative modelling, we here assume a redshift-
independent Gaussian distribution p(Z) = N(uuz, 0z) in
the Bayesian analysis, where the mean (uz) and standard
deviation (o) are free parameters independent of the red-
shift. We refer it to as no-z. We compare the models using
Akaike’s information criterion (AIC) and Bayesian infor-
mation criterion (BIC). The AIC and BIC are defined by
AIC = 2N, — 2In Pryax and BIC = Nipyraln Ny — 2In provax,
respectively. Here Ny, is the number of parameters, Ny,
is the number of data points, and py.. is the maximum
value of the posterior probability [equation (A2)]. The
first terms in both the AIC and BIC describe a penalty of
over-fitting by increasing the number of parameters in the
model. The AIC, derived by relative entropy, measures
relative loss among given different models. A low AIC
value means that a model is considered to be closer to the
truth. The BIC is derived by the framework of Bayesian
theory to maximize the posterior probability of a model
given the data. In other words, a model with the lowest
BIC is preferred to be the truth. The AIC and BIC are
based on different motivations and thus they provide
complementary information. When we compare with two
models, the model with the lower value is preferred. The
difference between the models are significant according
to both the AIC and BIC, AAIC = AIC,,., — AIC = +43
and ABIC = BIC,,., — BIC = +35. The orange region in
figure 9 does not match with the data distribution. There-
fore, the redshift-dependent parent population is preferable.

We next assume a second-order redshift depen-
dence for 1/(2) = iz + v, In E2) + v, 2[In E(2) and
Inoz(z) =Inozo + ¥, In E(2) + ¥s,.2[In E(z)]*. The result
does not significantly change and, thus, the resulting AIC
and BIC become larger (worse) than those of our main
result due to the penalty from the increased number of
parameters; AAIC = +3 and ABIC = +13. The first-order
dependence is sufficient to describe the data.

The code could in principle estimate the wz(z) and
0z(z) parameters without a correction for the Malmquist
bias. We perform the Bayesian analysis using a subset
of y={y., ¥scc, ¥} in order to understand the impact
of the tracer of cluster finders in the multivariate scaling
relation analysis. The resulting [02(z)]* becomes higher
by ~7%, and consequently the mass-dependent slopes,
B, become shallower by ~5% in 8., ~7% in Bpcg, and
~5% in B,. This change is caused by the relationship
between the variance in the parent population and the
slope [equation (A13)], which is described in appendix 2.
Change in the normalization is less than 1%. Although the
overall results do not change, the simultaneous treatment
of the X-ray luminosity approximately related to the cluster
finding can more properly estimate the parent population
in the computation of the multivariate scaling relations.
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4.1.3 Systematics by weak-lensing mass calibration

In the limit of low S/N weak-lensing signals, the errors
of the weak-lensing masses are mainly caused by the
number of background galaxies, rather than intrinsic halo
properties of the halo non-sphericity, subhalos, and its
surrounding large-scale structure. Indeed, Umetsu et al.
(2020) have shown that the measurement errors using
synthetic weak-lensing data of the analytic NFW model
are comparable to those using cosmological simulations.
We independently introduced the bias and scatter in weak-
lensing mass measurement based on dark-matter-only
simulations (Umetsu et al. 2020). Higher-mass halos tend
to have less spherical structure because they are the most
recent forming systems and thus growth of halos may not
have yet erased the information about initial condition and
formation process. (e.g., Jing & Suto 2002; Allgood et al.
2006). The abundance of subhalos in high-mass halos is
larger than in low-mass halos. Therefore, the weak-lensing
mass calibration inherent in the intrinsic halo properties
depends on cluster masses (Umetsu et al. 2020).

Since it is difficult to calibrate weak-lensing masses for
individual clusters in response to their own properties,
we employed the statistical approach of the weak-lensing
mass calibration [equation (6)]. The overdensity radii are
accordingly changed from the weak-lensing overdensity
radii by the weak-lensing mass calibration. We adapted the
weak-lensing overdensity radius as the measurement radius
for the gas mass and the stellar mass because the individual
true masses are not clarified. Since the weak-lensing over-
density radii are only —6% = 4% smaller than those of the
true mass, it is negligible compared to the statistical errors.

In subsection 3.3, we estimated how much the gas mass
and the stellar mass are changed by the aperture correction
which is caused by the difference in the measurement radii
of r¥L and rs5p. Since the mass bias becomes larger with
decreasing the true mass (figure 1), the aperture correction
makes the stellar mass and the gas mass 5% and 9%
higher at Mso0E(z) ~ 10" M@, respectively. In contrast,
the aperture correction at the high-mass end of ~10% is
less than a few percent.

When we fix the estimated values of awr, Bwr, and
owL of the weak-lensing mass calibration ignoring their
uncertainties, the measurement errors of the gas mass
scaling relation at MspE(z) ~ 10Y M and the intrinsic
correlation coefficient are reduced by 10%-30%, while
the other errors are not significantly changed. When we
remove the prior of oy, we obtain oy = 0.147)07, which
is consistent with the mass calibration determined by the
639 simulated clusters.

We also investigate the multivariate scaling relation
with the mass calibration with the tanh function (sub-
subsection 2.4.3). In that case, we replace M, by the

calibrated mass, M3 in the X quantity and treat X = Z
with a fixed o x = owr. The resulting regression parameters
are consistent with those of our main result (table 1) within
1o errors. When we scale the y, and y, observables by 8y
>~ §x according to the mass calibration, the result does not
change significantly.

We fix the intrinsic correlation coefficients of
rwi,i = 0 in the analysis. When we treat them as
free parameters, the fitting results are almost the same.
Therefore, an over-fitting by increasing the number of free
parameters occurs. A penalty of the over-fitting increases
the information criterion, especially ABIC = +17. We thus
prevent over-fitting by fixing the correlations in the analysis.

4.1.4 Systematics by error correlation

Since the member galaxies are sparsely distributed, we
adopted a single error correlation coefficient 7§} , com-
puted over the whole sample. Intrinsic covariance might
be affected by this treatment. We therefore assess how
much the intrinsic covariance is changed by our choice
of ryi .. We first pick a uniform random number from
a range of [rgi , — 0.1, 7y , +0.1] for each cluster and
we find that the resulting intrinsic covariance is consis-
tent with our reference results (table 2). Therefore, our
treatment does not significantly impact the results. Next,
we use rg; , = —0.5, 0, 0.5, which are lower than 0.873
(sub-subsection 2.4.1), and we find that all the results of
7., s become negative or have no correlation, in contrast to
our positive result (table 2), and the uncertainties for 7pcg, .
and 7, , become larger by 2.2 and 1.6 times, respectively.
The other parameters are not significantly affected by the
assumption. The change of 7, , is caused by 7{; = g 7§ -
Therefore, an improper treatment can give rise to spurious

anti-correlation between gas mass and stellar mass.

4.1.5 Blue galaxies and the intracluster light

We counted the total stellar masses of the red galaxies
selected by the color-magnitude planes using the XXL cen-
ters and redshifts. In general, cluster members are composed
of red and blue galaxies which are distributed in the inner
and outer regions, respectively (e.g., Whitmore et al. 1993;
De Propris et al. 2004; Nishizawa et al. 2018). Red galaxies
would be the dominant component of the cold baryon
within 7509 which is roughly half of the virial radius. As for
blue galaxies distributed at outer radii, there is the possi-
bility of an over-subtraction of background component. We
estimate how much stellar mass is changed when including
blue galaxies. We first select galaxies from the MIZUKI
photometric redshift catalog (Tanaka 2015; Tanaka et al.
2018; Aihara et al. 2019; Nishizawa et al. 2020) with
criterion of |zph — ze| < 0.05(1 + z.) and M, > 10" M,
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where z,, is a photometric redshift. We pick up galaxies
which are not identified in the red galaxy catalog but in
the photometric catalog and refer them to as blue galaxies.
When we include blue galaxies, the total stellar masses for
individual clusters are changed by 15% + 17%. We repeat
the Bayesian analysis for the red and blue galaxies and
obtain a, = 0.70%00%, B, =0.81"12, and o, = 0.4970,0.
The baseline for the red and blue galaxies agrees with that
for the red galaxies within the uncertainties (table 1). The
intrinsic correlation coefficients (r, pcg = 0.57f8:% and
7.q = 0.29703%) are not significantly changed, either.

The tidal stripping of stars from interacting galaxies and
the merger of small galaxies with central brightest cluster
galaxies make a diffuse ICL. In particular, an extended
low-surface brightness envelope forms around the central
galaxies. However, it is very difficult to detect such a weak
excess of the ICL component observationally from the
image background because of over-subtraction. The HSC-
SSP data is currently not adequate for the study of the ICL.
Since we adopted the cmodel magnitude, we did not include
the ICL component. Huang et al. (2018b) have studied how
much the cmodel photometry underestimates stellar masses
for massive galaxies at z < 0.5. They evaluated a difference
between stellar masses estimated by the cmodel magnitude
and surface mass density profiles out to 100 kpc without
imaging stacking. The stellar mass within 100 kpc corre-
sponds to the total stellar mass because a 100 kpc aperture
covers 5-10 times of effective radii. Huang et al. (2018b)
found that a median M, with the cmodel magnitudes
underestimate the stellar masses only for massive galaxies
(M, > 10"¢ M ~ 4 x 10" M) by ~0.1-0.15 dex. Based
on their results, we expect that the total stellar + ICL masses
within 100 kpc aperture around massive galaxies like BCGs
would be ~1.3-1.4 times higher than our cmodel estimates.

4.2 Baryon budget

This subsection is focused on the discussion of our
measurements of baryon budgets of the clusters.

4.2.1 Baryon fractions

We found that the gas and stellar mass fractions increase
and decrease with increasing halo mass (figure 5; subsec-
tions 3.1 and 3.3), respectively. This trend can be explained
by a halo mass dependence of the star formation effi-
ciency. The star formation efficiency in low-mass clusters
and groups is expected to be higher than that in high-mass
clusters. In addition, tidal interactions among galaxies and
the removal of the gas reservoir of galaxies by ram-pressure
are more inefficient in low-mass clusters than in high-mass
ones. Therefore, a larger fraction of the gas in low-mass

clusters is consumed to form stars through cooling, while
galaxy formation tends to be inhibited in high-mass clusters.

AGN feedback is also important to determine the
baryon budget, because it heats the surrounding gas and
suppresses star formation and more or less modifies radial
distribution of gas, especially in low-mass clusters. Some
AGN:s especially in centeral galaxies are energetic enough
to expel the gas material of stars out from the relatively
shallow potential well of the low-mass clusters. The
expelled gas in low-mass clusters is difficult to re-accrete.
Since the star formation activity does not change the total
baryon fraction because of the mass conservation (e.g.,
Kravtsov et al. 2005), the total baryon fraction without
AGN feedback is expected to be constant against the halo
mass. However, the gas redistribution by AGN feedback
could change halo mass dependence on the baryon and gas
mass fractions. Therefore, the degree of balance between
star formation and all the AGN activities throughout the
entire cluster history controls the mass dependence of the
baryon contents. The result that the total baryon fraction
reaches to the cosmic mean baryon fraction ,/€, at
high-mass halos of 10" M indicates that the high-mass
halos are like a closed box in which the total baryon
is confined. On the other hand, since fi, ~ 0.5(R,/Qm)
at low-mass clusters of ~10"3 M), the low-mass halos
are likely to be an open box in which baryons are not
conserved. This is probably caused by AGN feedback.

We investigated the baryon fractions for the clusters
which currently host radio AGN activity and those for
the other clusters (figure 8; subsection 3.7). We do not
find a significant difference of the baryon fraction in
response to the current AGN activity. In general, AGN
activity is a transient phenomenon, whereas gas ejection
from the potential well depends on the total integrated
non-gravitational energy. This implies that the cumulative
quantities such as the gas and stellar masses are insensitive
to the current AGN activity. However, a larger sample is
essential to constrain the parameters further.

We also found good agreement of the baryon fractions
between the C1 and C2 clusters (figure 7), though the like-
lihood function of the XXL selection for the C1 class is dif-
ferent from that of the C2 class. This is promising for XXL
X-ray cluster counts analyses of cosmological parameters.

4.2.2 Intrinsic covariance in baryon content

Clusters move around the baselines in the scaling rela-
tions due to mass accretion, mergers, cooling, and AGN
feedback. Since the baryonic evolution is an order of
sound-crossing time, their positions in the scaling relations
instantly change. Their statistical properties are observed as
intrinsic covariance. If all the baryons were confined within
the halo (closed box), the intrinsic correlation coefficient
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between the gas mass and the stellar mass is expected to be
negative because of 8f, = 0 = &f, + 8f.. As we mentioned
above, the anti-correlation appears only for the case of
the improper treatment of the error covariance matrix. We
found no evidence that the intrinsic correlation coefficient
between gas mass and stellar mass in the whole sample is
correlated or anti-correlated. It is generally very difficult
to accept the null hypothesis that the true correlation is
zero under a finite uncertainty. With the N sample, the
constraint has to satisfy with |r. ,| < 0.168(N/136)7'/* so
that the p-value of the null hypothesis can be higher than
5%. The required uncertainty is about half of the current
constraint. However, the margin of the error includes
the null correlation. Our result does not contradict the
open-box scenario suggested by the total baryon fraction
(sub-subsection 4.2.1).

The Mpcg—Msoy relation showed the largest intrinsic
scatter and a weak-mass dependence, which implies a pres-
ence of another factor besides the halo mass in the BCG
mass growth. We found significant correlations between
M, and Mpcg and between M, and Mpcg (subsection 3.5),
qualitatively suggesting that the BCGs co-evolve with the
satellite galaxies.

Intrinsic correlation between soft-band Ly and M, is
close to unity, which is naturally explained by the X-ray
emissivity.

The C2 clusters have larger intrinsic scatter of total
and BCG stellar masses than the C1 clusters. The dis-
crepancies for the former and latter cases are 3.30 and
4.10, respectively. Since the C2 class has lower X-ray
luminosity (lower masses), the stellar properties in low
X-ray clusters are likely to be more diverse from cluster to
cluster.

4.3 Comparison of numerical simulations

Recent cosmological hydrodynamic simulations (e.g.,
McCarthy et al. 2011, 2017; Young et al. 2011; Planelles
et al. 2013; Le Brun et al. 2014; Martizzi et al. 2014;
Wu et al. 2015; Sembolini et al. 2016a; Barnes et al.
2017a; Farahi et al. 2018b, 2020; Henden et al. 2020)
studied stellar mass and gas distributions in clusters and/or
groups. The simulations include the effect of cooling, AGN
feedback, star formation, and SN feedback which are com-
pared with the results of non-radiative simulations. Since
gas distributions are radially modified by AGN feedback,
the scaling relations depends on overdensity radius (e.g.,
Young et al. 2011; Farahi et al. 2018b). Thus, when we
compare numerical simulation with observations, it is
important to choose the same overdensity as observations
(i.e., A = 500). Results of numerical simulations depend

on the different AGN models (e.g., McCarthy et al. 2011;
Le Brun et al. 2014; Sembolini et al. 2016b).

4.3.1 Scaling relations and mass-dependent slopes
We compare our results with some of the simulations
in figures 10. Simulation results are rescaled to z = 0.3,
close to the median redshift of the XXL clusters, assuming
self-similar evolution. We find that our normalization
and slope in M,—M and M,—M relations broadly agree
with those of numerical simulations over two orders of
magnitude in mass.

We compare the slopes in the scaling relations at
A = 500 (figure 11). The slopes of some numerical
simulations depend on the halo mass. For instance, Farahi
(2020) showed that the slopes of the gas mass and stellar
mass scaling relations at massive clusters (Mso ~ 10" M)
are close to unity and become steeper and shallower with
decreasing mass, respectively. We therefore estimate the
average value and scatter with a weight of the resulting
parent population p(Z, z) to compare fairly with their
values in our mass range. We use the results that are as close
as possible to our median redshift and consider the redshift
dependence of p(Z, z). The gas mass slopes of numerical
simulations (Young et al. 2011; Planelles et al. 2013; Wu
et al. 2015; Barnes et al. 2017a; Truong et al. 2018; Farahi
etal. 2018b, 2020; Henden et al. 2020) are higher than pre-
dicted by the self-similar model (8 = 1). Some simulations
are slightly steeper than the self-similar expectation (1 < 8,
< 1.1) while others have a clear higher slope (8, > 1.2). The
simulation results are not converged. Our results agree with
the former case (e.g., Young et al. 2011; Barnes et al. 2017b;
Farahi et al. 2018b). The slopes of the stellar to total mass
relation (Wu et al. 2015; Farahi et al. 2018b, 2020; Pillepich
et al. 2018; Henden et al. 2020) are less than unity and
agree with our results. The steep gas slope and the shallow
stellar slope are consistent with the physical interpretation
that the star formation efficiency is higher in low-mass
systems than in high-mass ones (sub-subsection 4.2.1).

The Mycg—M relation was studied in several numerical
simulations (e.g., Le Brun et al. 2014; Cooper et al. 20135;
Pillepich et al. 2018; Farahi et al. 2020; Henden et al.
2020). The evolution of BCGs depends on both star
formation efficiency and AGN feedback. In addition, since
the BCG is located near cluster center, galaxy-galaxy
mergers are an important process for its fast growth. Using
the UniverseMachine simulation (Behroozi et al. 2019),
Bradshaw et al. (2020) showed the shallow slope and large
intrinsic scatter in the Mpcg—Mygo relation. It is explained
in that Mg is a function of not only halo mass but also
halo formation time.

We compare the BCG-total mass slope with numer-
ical simulations at A = 500. The BCG mass slopes
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Fig. 10. Comparison of numerical simulations and observations in literature. From left to right: the gas, stellar, and BCG mass scaling relations. The
solid blue line and regions denote the estimate and the 10 uncertainty, respectively. Our results and numerical simulations denote the true masses
in the all panels, while the masses for the previous observations, except for Sereno et al. (2020), do not (mass proxies, lensing masses or hydrostatic
masses). In the left-hand panel, the solid green, magenta, red, and light-blue lines are simulations (Young et al. 2011; Barnes et al. 2017b; Truong
et al. 2018; Farahi et al. 2018a), and the dashed orange, yellow, black, green, dark-blue, and brown lines are previous observations (Vikhlinin et al.
2009; Ettori 2015; Mantz et al. 2016; Chiu et al. 2018; Mulroy et al. 2019; Sereno et al. 2020), respectively. The line lengths of the observations denote
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DeMaio et al. 2020), respectively. (Color online)
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Fig. 11. Comparison of mass-dependent slopes 8 with those of numer-
ical simulations (Young et al. 2011; Planelles et al. 2013; Barnes et al.
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(Pillepich et al. 2018; Farahi et al. 2020; Henden et al.
2020) are much shallower than those of the M,.—M and M,
M relations. We use stellar mass within a three-dimensional
aperture of 30 kpc (Pillepich et al. 2018) for a comparison.
Although the BCG slopes show a diversity, they are similar
to ours (figure 11). We compare with Pillepich et al. (2018)
because the other two simulations do not show the normal-
ization. They showed that the normalization of the BCG

mass depends on the three-dimensional aperture size. The
normalization with 100 kpc radius is about twice larger
than that with 30 kpc. This is caused by the ICL component
at the BCG outskirts. They also mentioned that the ICL
stellar mass outside 30kpc accounts for ~40% of the
total stellar mass of central galaxies and their surrounding
ICL at My ~ 10" M and ~80% at Mgy ~ 10" Mgy.
We here compare with the normalization measured with
30kpc radius which is the minimum radius discussed in
Pillepich et al. (2018) and covers the measurement regions
of the cmodel magnitude. The normalization of the BCG
mass to total stellar mass ratio of the numerical simulations
(figure 6; see also figure 10) is constantly offset from our
baseline by ~1.4 times. We found that our BCG stellar mass
estimates agree with those estimated by the CFHT photom-
etry (Lavoie et al. 2016), as shown in sub-subsection 4.4.2.
When we multiply the BCG mass by 1.3 because of the
underestimation of the cmodel magnitude (Huang et al.
2018b, and sub-subsection 4.1.5), the discrepancy is
improved. However, if we accordingly change the aperture
size to 100kpe, a factor 2-3 discrepancy between the
observations and the simulation still remains. We leave it
for future work to understand the normalization offset.

4.3.2 Intrinsic covariance in scaling relations

Intrinsic covariance is one of benchmarks in understanding
cluster evolution. Farahi et al. (2018b) computed how
slope, normalization, and intrinsic scatter change by a halo
mass, using both BAHAMAS (McCarthy et al. 2017) and
MACSIS (Barnes et al. 2017b) simulations. We weight
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their intrinsic scatters by p(Z, z) to derive representative
values for our sample and obtain (o,) = 0.20 £ 0.02 and
(o,) =0.24 4+ 0.02 at z = 0.5, where the errors are the 1o
range over our mass range. Farahi et al. (2020) obtained
the intrinsic scatter of o, = 0.065 £+ 0.003, o, = 0.098
+ 0.004, and opcg = 0.333 £ 0.015 using IllustrisTNG
simulations (Pillepich et al. 2018). There is a discrepancy
between different numerical simulations. Although their
scatter is somewhat lower than our results, the ascending
order of intrinsic scatter of each baryon component is the
same as our results: 6, < 0, < opcG.

Some numerical simulations (e.g., Wu et al. 2015;
Farahi et al. 2018b, 2020) showed that intrinsic correlation
coefficient 7, , at a fixed total mass is negative. Wu et al.
(2015) showed a strong negative rank correlation 7, , =
—0.69 between the deviations of the gas and stellar mass
fractions from their baselines, although their definition is
different from ours. The negative correlation appears in a
wide overdensity range A = 2500-10. They proposed a
closed-box scenario where the intrinsic correlation coeffi-
cient 7, , is anti-correlated. Farahi et al. (2018b) also found
that intrinsic correlation coefficient changes with the halo
mass Msg. The intrinsic correlation at z = 0.5 is nearly
zero at Mso ~ 10" M, and it is negative at 210" M¢.
They proposed that non-correlation at ~10"* M is caused
by an open baryon box scenario in which the total baryon
in low-mass clusters is not conserved by AGN feedback and
proposed the closed-box scenario for the negative correla-
tion for high-mass clusters. We recompute 7, , at Mso from
figure 5 in Farahi et al. (2018b) with a weight of p(Z, z) and
obtain (r, ,) = —0.21 + 0.05, where the second quantity
is the 1o range. Farahi et al. (2020) also found a similar
result, —0.255 + 0.074, measured at M,go. The probability
of accidental correlations from 136 random pairs to realize
the simulated result is O(10~*). Although we do not find
such a negative correlation, a difference between their and
our results is only 1.40 with our uncertainty.

Anbajagane et al. (2020) found a positive intrinsic
correlation between central galaxy and total stellar masses
at Myoy. The intrinsic correlation coefficient weighted
with p(Z, z), (r.pcc) = 0.44 £0.07, 0.44 = 0.04, 0.64 =
0.01 and 0.40 £ 0.05, varies according to the simulation
schemes. Farahi et al. (2020) found r, ycg = 0.273 +0.052
at Mgo. Although the overdensity definitions are different,
numerical simulations and our observation suggest that the
mass growths of the total stellar mass and the BCG mass
are correlated.

4.3.3 Redshift evolution

Henden et al. (2020) investigated a redshift evolution
in scaling relations. They found that the gas mass
and the stellar mass at fixed halo mass increases
and decreases with increasing redshift as M, o

(1 + 2)%41=014 and M, o (1 + z)7931 %008 respectively,
and the BCG mass weakly depends on the redshift Mycg
o (1 + z)7 %1500 They concluded that the gas redshift
evolution is attributed to the effectiveness of gas expulsion
by AGN feedback with decreasing redshift. Le Brun et al.
(2017) also found that the gas mass evolves with redshift
as M, o E(z2)*¥7¢ %006 On the other hand, Planelles et al.
(2013) showed that redshift evolution for f, and f, are
negligible. Truong et al. (2018) investigated a redshift
evolution in X-ray scaling relations and they did not find
a significant redshift evolution in the M—M, relation. Red-
shift evolution differs by different numerical simulations.
Since our measurement errors of y, and y. are large,
we cannot discriminate differences between numerical
simulations.

4.4 Comparison of observations

Gas and stellar masses in clusters were measured by various
previous papers and projects (e.g., Lin et al. 2003, 2004,
2012, 2017; Okabe et al. 2010; Gonzalez et al. 2013;
Lagana et al. 2013; Chiu et al. 2016b, 2018; Eckert et al.
2016; Zhang et al. 2016; Kravtsov et al. 2018; Mulroy
et al. 2019; Farahi et al. 2019; Sereno et al. 2020). Since
each study adopted a different approach (table 6), it is
important to discuss differences in cluster sample, cluster
mass measurement, and fitting procedure.

First, nowadays selection effects are more and more
important. A cluster catalog can be constructed from
optical (e.g., Oguri 2014; Rykoff et al. 2014; Rozo et al.
20165 Oguri et al. 2018; Maturi et al. 2019), X-ray (e.g.,
Bohringer et al. 2004; Piffaretti et al. 2011; Adami et al.
2018), thermal SZ effect (e.g., Planck Collaboration 2014;
Bleem et al. 2021; Hilton et al. 2021), or weak-lensing
observations (e.g., Miyazaki et al. 2007, 2018a; Oguri
et al. 2021). The Malmquist bias should be properly
treated in fitting. Redshift ranges also vary with surveys.
After all considerations, further differences could depend
on intrinsic selection effects inherent in cluster astrophysics
and/or different observational techniques.

Secondly, cluster mass measurements are one of the
important sources of systematic errors. To date, hydrostatic
equilibrium mass, weak-lensing mass, or mass derived
through scaling relations with mass proxies are used in
the literature. A deviation from hydrostatic equilibrium,
a lensing mass bias, or intrinsic scatter in scaling relations
(e.g., Pratt et al. 2019) should be considered in fitting
methods (e.g., Sereno 2016).

Thirdly, when the gas mass and stellar mass are
measured within the same overdensity radii of the mass
measurement, an error correlation between baryonic
observables and mass should be considered in fitting (e.g.,
Okabe et al. 2010).
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Table 6. Summary of baryon fraction studies in literature and this study.’

Typical mass  Mass Selection Aperture

Clusters  Size Mass [Mo] bias Contents effect p(Z) Terr Tint

(1) (2) (3) (4) (5) (6) (7) (8) ) (10)

This work X(XXL) 136 WL ~1014 Yes  Mg/M./Mgpcg Yes G Yes Full
Sereno et al. (2020) X(XXL) 118 WL ~101 Yes Mgt Yes G — Full
Eckert et al. (2016) X(XXL) 95 Proxy ~104 No M, Yes K No Diag
Mantz et al. (2016) X(RASS) 27 WL ~8 x 1014 Yes Mgi Yes Mass No$ Partial
Mulroy et al. (2019) X(RASS) 41 WL ~6 x 1014 Yes M, Yes Mass Yes Full
Farahi et al. (2019) X(RASS) 41 WL ~6 x 10" Yes Mgt Yes Mass Yes Full
Vikhlinin et al. (2009) X(RASS) 85 Proxy ~3 x 1014 No Mg Yes Mass No Diag
Chiu et al. (2016a) SZ(SPT) 54 Proxy ~6 x 1014 No Mg /M., /Mgcg No No No Diag
Chiu et al. (2018) SZ(SPT) 91 Proxy ~5 x 1014 No Mg /M, Yes Mass No Diag
Chiu et al. (2016b) X(BCS) 46 Proxy ~8 x 1013 No M, Yes Mass No Diag
Gonzalez et al. (2013) Opt(R) 15 Proxy ~2 x 1014 No Mg /M, No No No Diag
Ettori (2015) X(R) 59 HE ~3 x 1014 No M, No No Yes Diag
Kravtsov et al. (2018) Opt(R) 9 Proxy ~5 x 1014 No M, /Mgpcg No No No Diag

Lavoie et al. (2016) X(XXL) 85 Proxy ~2 x 10 No Mgca No No No No

DeMaio et al. (2020) Mix(R) 23 Proxy/WL ~1014 No Mpcg No No No No

1(1) Cluster finders. “X,” “SZ,” “Opt,” and “Mix” represent X-ray, SZ, optical, and mixed (X/SZ/Opt) clusters, respectively. Parentheses are samples defined
by the XXL Survey, the ROSAT All-Sky Survey(RASS), XMM-Newton-Blanco Cosmology Survey (BCS), South Pole Telescope(SPT), or random sample (R),
respectively. (2) Sample size. (3) Cluster mass measurement. “WL,” “HE,” and “Proxy” represent weak-lensing mass, hydrostatic equilibrium mass, and mass
estimated by scaling relations, respectively. (4) Typical mass in unit of Mg. The mass ranges are shown in figures 10 and 12. (5) Correction of mass bias in
linear regression. (6) Scaling relation components (gas mass, total stellar mass, and BCG stellar mass). Some papers include other observables in multivariate
scaling relations, which is denoted by the “1” footnote mark. (7) Consideration of selection effect in linear regression. (8) Consideration of the parent population.
“G,” “K,” and “mass” represent Gaussian distribution, multiple Gaussian distributions using the Bayesian regression code of Kelly (2007), and mass function,
respectively. (9) Aperture-induced error correlation between observable and measured mass. “§” denotes a different approach. (10) Intrinsic covariance matrix
for baryonic components, Zine; “Full,” “Diag,” and “Partial” denote the full matrix, the diagonal terms, and the matrix including fixed elements, respectively.

4.4.1 Gas and stellar mass fractions

The left-hand and middle panels of figure 10 compare our
results with the M,—M and M,—M relations from literature.
Most of the previous papers analyzed several tens of clus-
ters. Table 6 summarizes mass measurements and fitting
method. In figure 10, we use the Chabrier IMF for a com-
parison of stellar masses. The x range of each line explicitly
describes the mass range of each sample (Msp0 > 10'* M).
We multiply the best-fitting lines from the literature by E(z)
when the literature uses M, and Msgo instead of M,E(z)
and M;q0E(z). Approaches used in the previous papers can
differ from ours. Nevertheless, the scaling relations broadly
agree with our results. We stress the uniqueness of this
study: the large sample of the 136 clusters with nearly two
orders of magnitude in mass including low-mass clusters of
O(10" M) and our Bayesian analysis method that fully
considers the error covariance matrix, the selection effect,
and the weak-lensing mass calibration.

We compare our M,—M relation with the previous XXL
papers (Eckert et al. 2016; Sereno et al. 2020). Eckert
et al. (2016) studied the gas mass fraction for the 100 XXL
brightest cluster sample (Pacaud et al. 2016). They used a
temperature as mass proxy calibrated with a mass and tem-
perature scaling relation based on a CFHTLenS (Heymans
et al. 2012; Erben et al. 2013; Lieu et al. 2016). We have

updated weak-lensing masses to the HSC-SSP shape catalog
(Mandelbaum et al. 2018a; Umetsu et al. 2020). Since over-
density radii are also changed, we accordingly re-estimate
gas mass and properly propagate the errors of weak-lensing
mass in the scaling relation analysis. We also correct for the
weak-lensing mass calibration (Umetsu et al. 2020). In the
end, our main result of the M,—M relation is about 30%
higher than that of Eckert et al. (2016) at M5y ~ 10'* M.
This point was already discussed in Sereno et al. (2020).
Sereno et al. (2020) carried out the Bayesian analysis for the
118 XXL subset clusters using the HSC-SSP weak-lensing
mass (Umetsu et al. 2020) and the gas mass measured
within different radius. Their measurement radius is com-
puted by an iterative procedure using the surface brightness
profile and the f,—Msgo relation from Eckert et al. (2016).
Their gas mass slope, 1.55 + 0.30, is consistent with ours
within errors, although their line in figure 10 seems to
be steeper. More conservatively, we repeat the regression
analysis for the 118 clusters used in Sereno et al. (2020) and
find @, = 1.967007 and B = 1.147313. The difference in the
slope is 1.4 o, where o is the error from Sereno et al. (2020).
The normalization of Sereno et al. (2020) is ~4'} times
higher than ours at Ms5o0E(z) = 10" M and ~0.47( times
ours at 10" M. The gas mass fraction of Sereno et al.
(2020) becomes higher than the cosmic baryon fraction
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Q/Qn at Mspo 2

~

4 x 10" M, while our result is lower
at Msop < 10" M. The two measurements are marginally
consistent within the large error of Sereno et al. (2020).

We compare with gas mass scaling relations from
Weighing the Giants (WtG; Mantz et al. 2016) and the
Local Cluster Substructure Survey (LoCuSS; Mulroy et al.
2019). The two surveys select their cluster samples from
ROSAT All Sky Survey catalogues (RASS; Ebeling et al.
1998, 2000; Bohringer et al. 2004) and comprise some of
the most massive clusters (Msoo ~ 4 x 10* M). The red-
shift ranges for WtG and LoCuSS are redshifts 0 < z < 0.5
and 0.15 < z < 0.3, respectively. They carried out analyses
of multivariate scaling relations based on individual weak-
lensing masses, taking into account both selection effect and
cluster mass function. We cannot find an explicit descrip-
tion about an aperture-induced error correlation between
two baryonic observables (sub-subsection 2.4.1; e.g., 7{%).

For WtG, the result of Mantz et al. (2016) is sim-
ilar to ours. However, their slope using cluster data is
B, = 1.00 £ 0.01. Their measurement error seems to be
extremely small. Their slope is ~30 lower than ours, where
o is our measurement error.

For LoCuSS, Mulroy et al. (2019) gives a shallower
slope B, = 0.7 + 0.1, which is a ~60 difference from ours.
When they applied the Bayesian code of Kelly (2007) to
a single M,~M scaling relation, the slope B, = 0.99*) 1
becomes consistent with the slope of WtG. Therefore, the
shallow gas mass slope of their main result might be related
to their fitting code. When we adopt the result of Kelly
(2007) for Mulroy et al. (2019), the gas mass slopes for
massive clusters are close to unity. Numerical simulations
(Farahi et al. 2018D, see also sub-subsection 4.3.1) pointed
out that the gas mass slope for very massive clusters
~10"% M@ is close to unity and becomes steeper with
decreasing mass. The difference of slopes between ours
and WtG/LoCuSS can be ascribed to the difference of halo
mass. Since the two papers (Mantz et al. 2016; Mulroy
et al. 2019) did not include stellar masses in their analyses,
we cannot make a comparison with them.

We next make a comparison using the stellar mass
fractions from literature. The XMM-Newton-Blanco Cos-
mology Survey (XMM-BCS; Chiu et al. 2016b) estimated
the M,—M;q relation for a sample of 46 clusters based
on masses estimated through a scaling relation and found
a shallow slope, M. oc MOS*015(1 + 2)" 004047 with
negligible redshift evolution. Lin et al. (2017) studied the
M,—M,, relation for optically selected clusters (CAMIRA;
Oguri et al. 2018) using HSC-SSP data and found that the
relation for the optical clusters is similar to that of X-ray
selected clusters (Lin et al. 2012). Gonzalez et al. (2013)
studied gas mass and stellar mass fraction of optical Abell
clusters (Abell et al. 1989) in the local Universe, with a

hydrostatic-mass-based scaling relation. Their photometry
includes ICL, but their stellar mass fraction is about half
of ours. Chiu et al. (2018) studied baryon budget in 91 SZ
clusters (0.2 < z < 1.25) selected by the South Pole tele-
scope (SPT) using M;sqo masses obtained through a scaling
relation and found M, ox MJE"*012(1 + 2)005%027 (see also
figure 10). Their stellar mass slope agrees with ours, though
the normalization of their stellar mass fraction is about
70% lower than ours. Decker et al. (2019) studied stellar
mass fraction for massive (Mspo > 2 x 10'* M) and high-
redshift (z = 0.93) clusters selected by an infrared survey,
the Massive and Distant Clusters of the WISE Survey
(MaDCoWS), and the SPT Survey. Their stellar mass frac-
tion is consistent with optically-selected clusters (Gonzalez
et al. 2013), and thus is lower than ours. They also found
that the difference of averaged stellar mass fraction between
infrared- and SZ-selected samples is not significant.

The right-hand panel of figure 12 shows the gas and
stellar mass fractions of the SZ (Chiu et al. 2018) and
optically selected clusters (Gonzalez et al. 2013) for a
comparison of different cluster finders (table 6). Their
mass ranges are higher than ~10'* M. The gas mass
fraction in the SZ and optically selected clusters are similar
to ours. We re-scale the stellar mass fraction of Gonzalez
et al. (2013) which used the Salpeter IMF by the Chabrier
IMF. Although they include the component of the ICL, the
stellar mass fraction for the optical clusters is lower than
those in the XXL and SPT clusters. The gas mass fractions
are similar to each other irrespective of the cluster finding
methods, while the stellar mass fractions are slightly
different.

4.4.2 Mgcg—M relation

Literature results (Chiu et al. 2016a; Lavoie et al. 2016;
Kravtsov et al. 2018; DeMaio et al. 2020) show that
the mass-dependence slope in the Mpcg—M;o relation is
B+ ~ 0.4-0.6. Analyses can differ by methodology: mass
measurements, photometric measurements, inclusion or
exclusion of the ICL. Nevertheless, the previous studies are
comparable to our result within a factor 2-3 (figure 10).
Other papers (Lidman et al. 2012; Bellstedt et al. 2016;
Zhang et al. 2016; Lin et al. 2017; Erfanianfar et al. 2019)
using M, also reported such a shallow slope.

Chiu et al. (2016a) measured the M,—M relation without
the ICL component. Both the slope, 0.42 + 0.07, and the
normalization are similar to ours.

DeMaio et al. (2020) measured the BCG stellar masses
including the ICL component for 42 galaxy groups and
clusters at z = 0.05-1.75, using Hubble Space Telescope
(HST) data. The slope, 0.37 + 0.05, is similar to ours,
while the normalziation is ~1.2-1.8 times higher than
ours at 10¥ M and 2 x 10" M. They also found
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Fig. 12. Comparisons of numerical simulations (left) and previous observational studies (right). The solid blue, red, and green lines are f;, f,, and fy of
this work, respectively. The orange horizontal line is Q,/Qm (Planck Collaboration 2020). In the left-hand panel, the solid light-blue, dashed magenta,
and long-dashed light-green lines are f,, (Planelles et al. 2013), f, (Pillepich et al. 2018), and fq (Young et al. 2011), respectively. In the right-hand
panel, the dashed blue, red, and green lines are f,, f., and fy for the SPT clusters (Chiu et al. 2018). The dotted blue, red, and green lines are f;, f,

and fy for the Abell clusters (Gonzalez et al. 2013). (Color online)

that the stellar envelope masses at 10 < < 100 kpc are
~50%-80% of the stellar masses within » < 100kpc
at Mspo ~ 2 x 10"-10 M. The normalization offset
would be partially due to the ICL component.

Kravtsov et al. (2018) studied the Mpcg—M relation for
nine nearby clusters at z < 0.1, using the SDSS DR8. They
measured light profiles using raw images in order to account
for the ICL component at the BCG outskirts and convert
the stellar mass using the mass and light relation. The best-
fitting baseline for the nine clusters is shown by the magenta
dashed line in the right-hand panel of figure 10. Their slope,
0.39 + 0.17, is similar to ours, while their normalization is
about twice as high as ours. We compute the BCG masses
for their clusters using the same data and find the weighted
geometric mean ratio, (Mo / Mi-;) = 0.42 £ 0.01. When
we use the SDSS DR16, (Mpd./ My-c) = 0.53 £ 0.02. The
discrepancy between the normalization can be explained by
a difference of treatment of the ICL component. Kravtsov
et al. (2018) have also pointed out that their r-band
luminosities are twice or more higher than those estimates
by the cmodel magnitude, which is consistent with our
comparison.

Lavoie et al. (2016) investigated the Mycg—M relation
for the XXL 100 brightest cluster sample (Pacaud et al.
2016) using the scaling-relation-based masses and found
a steep slope Bpcg = 1/(0.84£0.09) = 1.197)13. This
disagrees with our result and the aforementioned papers.
We found that our BCG identifications are the same
as theirs in the common 35 clusters and the average
relationship of the BCG masses with the Salpeter IMF is
Mg2ete = (1.09 £ 0.07) Mycg. Therefore, the discrepancy
is likely caused by the different fitting methods. Since they
used the BCG mass as the x quantity and ignored their

measurement error at each fitting run, their underestimation
of the slope (1/Bpcg = 0.84) in their fitting method could
be caused by the regression dilution effect (appendices 1
and 2). We also mention that the x? minimization using
the likelihood function without the determinant term is not
adequate for scaling relation analysis because the determi-
nant [equation (A2)] includes the parameters of the slopes
and intrinsic scatter and one cannot ignore it (see details;
Okabe et al. 2010). We carried out their x> minimization
method that they randomly pick up values from the normal
distribution with a mean of the observables and a standard
deviation of the measurement errors, and then confirmed to
recover their steep slope. When we treat the measurement
errors and the regression dilution effect in our code
properly, we find By = 0.72707% for their sample. The
value is still steeper but does not conflict with our result.
Ricci et al. (2018) studied the luminosity function of 142
XXL selected clusters and found by the x? minimization
that the median BCG magnitude is brighter with both
redshift and richness. The median BCG luminosity is
proportional to (1 + z)"12#028 and A0240:08 " recomputed
from table 4 of Ricci et al. (2018), where A is the cluster
richness. Although it is difficult to make a fair comparison
with our results because the observables are not the same,
the shallow slope of mass dependence is similar to our
results and a difference of redshift evolution is only ~20.

4.4.3 Intrinsic covariance

Farahi et al. (2019) found an anti-correlation between
intrinsic scatter of the gas mass and the K-band luminosity
of galaxies from 41 LoCuSS clusters of average mass
Ms00 ~ 4 x 10" M. The pairwise correlation coefficient
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is —0.56"035. We did not find a significant negative
correlation coefficient at Msog > 10" M. We compute the
probability of accidental anti-correlation for their 41 clus-
ters and find P(r > |r,,|) < 0.2, which is not significant.
We compute the probability of accidentally realizing their
correlation coefficient using our 136 clusters, and obtain
<2 x 1072. However, we do not find such a negative
correlation. Since we cannot rule out a possibility that
the intrinsic correlation depends on halo mass, we need a
larger sample of clusters for a more precise measurement.
To our knowledge, the positive correlation coefficients
between the BCG and total stellar mass and between the
stellar mass of BCG and satellite galaxies (subsection 3.5)
have not been reported in previous observational studies.

5 Summary

We carried out Bayesian analysis for the multivariate
scaling relations of the baryonic components of the 136
XXL groups and clusters over a wide range of nearly two
orders of magnitude in mass at 0 < z < 1. We combined
the HSC-SSP weak-lensing mass measurements (Umetsu
et al. 2020), the XXL X-ray gas measurements, and
the HSC-SSP and SDSS photometry. Bayesian regression
simultaneously and consistently takes into account weak-
lensing mass calibration, selection effect, error covariance
matrix, and intrinsic covariance. The analysis constrains
the slopes, normalizations, and intrinsic covariance among
the baryonic component masses well. Our method models
the parent population together with the scaling relations.
Thanks to this modeling, we can correct for the selection
effect and the regression dilution effect. The method does
not deal with cosmological inference and it is not affected
by uncertainties in the estimation of, e.g., og.

The slope of the gas mass and cluster mass scaling rela-

tion is 1.29701 steeper than predicted by the self-similar

model (8 = 1), while the slope of the stellar mass is 0.85" )3
shallower (table 1; figures 5 and 11; subsection 3.1). As
shown in figure 5 and subsection 3.3, the gas mass fraction
increases from f,(Qp/Qm) ™! ~ 0.3 at Ms5p0E(z) ~ 10" Mg
to ~0.9 at ~10" M. The stellar mass fraction decreases
from £.(Qp/Qm) " ~ 0.2 at MspoE(z) ~ 10" M to ~0.1 at
~10" M. Accordingly, the total baryon fraction increases
fo(Q2/92m)™" ~ 0.5 at MspE(z) ~ 108 Mg to ~0.6 at
~10" Mg and ~1.0 at ~10" M. The low baryon
fraction implies that clusters in our mass range are likely
to be open-box systems. The baryon, gas mass, and stellar
mass fractions as a function of Msyy agree with previous
numerical simulations and some previous observations
(figure 12; sub-subsections 4.3.1 and 4.4.1). Our analysis
can differ from previous works for the treatment of the
aperture radius and the mass calibration. The slope of

the BCG stellar mass is 0.497) 1} shallower than the other
two slopes, indicating a weak-mass dependence (table 1;
subsection 3.1). We do not find significant evidence
of redshift revolution in the scaling relations (table 3;
subsection 3.8) because of their large errors.

The intrinsic scatter is ranked as o, < 0, < opcg,
as numerical simulations (Pillepich et al. 2018; Farahi
et al. 2018b). We found a positive intrinsic correlation
coefficient between stellar mass and BCG stellar mass
(table 2; subsection 3.5), which is statistically significant, in
agreement with numerical simulations (Anbajagane et al.
2020; Farahi et al. 2020). The intrinsic correlation between
gas and stellar mass shows no positive nor negative
correlation (table 2; subsection 3.5), but the statistical
significance is marginal.

We do not find a significant difference between the clus-
ters with and without central radio sources (table 3; figure 8;
subsection 3.6). This implies that the cumulative quantities
such as the gas and stellar masses are insensitive to the
current radio AGN activity. The intrinsic scatter of the total
and BCG stellar masses in the C2 clusters with lower mass is
larger than that of the C1 clusters with higher mass (table 4).

This paper comprises the largest sample of X-ray selected
clusters over a wide range of nearly two orders of magni-
tude in mass. Studies of the mass-dependence of the intrinsic
covariance and the local slope are out of the scope of this
work and they could be achieved with the final sample of the
XXL clusters with the XXL selection function depending on
the cosmological parameters. Studies on subsamples divided
by mergers (e.g., Okabe et al. 2019, 2021) will also be done.
Analyses of optically selected (e.g., Oguri 2014; Rykoff
et al. 2014; Rozo et al. 2016; Oguri et al. 2018; Maturi
et al. 2019), SZ-selected, (e.g., Planck Collaboration 2014;
Bleem et al. 2021; Hilton et al. 2021) and shear-selected
(e.g., Miyazaki et al. 2018a; Oguri et al. 2021) clusters with
sample sizes of more than 100 are essential to understand
the selection effect of cluster finders on baryonic physics.
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Appendix 1 Linear regression
for multivariate scaling relations

N
n=1>

Let us consider an observed dataset {x,, y,} com-
posed of D + 1 variables for N sampled clusters,

where  y={y, y1,...,yp}. The true wvariables of

(X, YN (Y ={Y, Yi,...,Yp}) for the nth cluster
sample are related to the observables by p(x,, v,/ X, Y,) =
N({%, v} { X, Y.}, Terr.n) with Gaussian error covariance
matrix, X... In cluster scaling relation studies, the x value
can be a logarithm on the weak-lensing, hydrostatic mass,
or mass estimates from a scaling relation. They are affected
by scatter and/or bias from the true mass because of some
observational systematics (e.g., Zhang et al. 2010; Becker &
Kravtsov 2011; Hamana et al. 2012; Okabe & Smith 2016;
Pratt et al. 2019; Umetsu et al. 2020). Following Sereno
(2016), we introduce the latent variable Z as the true mass
(see also Mulroy et al. 2019; Farahi et al. 2019). The linear
regression equation between {X, Y} and Z is expressed by
Xz = ax + BxZ and Yz = a + BZ, respectively. Given
the intrinsic covariance matrix (X;,, e.g., Okabe et al.
2010), the conditional probability, p(X,,Y,|Z,,0),
is a multivariate normal density distribution of
(X0, Yl Z,, 0) = N({X,, Yill{ax + BxZu @ + BZ,), Tine)s
where 6 denotes the parameters of the distribution. The
element of the intrinsic covariance matrix is specified by

2

UX Txylo'xo'y‘ ny/GXo'y/
2
Tine = | 7xv,0x0Y, Oy, 7Y;v;0Y;0Y; (A1)
2
Txy/(fxo'y/ 7’Y,Y7'O‘Y,O'Y/ GYf

where ox and oy, are the intrinsic scatter and rxy, and ry,y,
are the intrinsic correlation coefficients between X and
Y; and between Y; and Y, respectively. All the elements
in the intrinsic covariance should satisfy the condition
of covariance correlation matrix: all the eigenvalues are
positive. Since the intrinsic scatter is a positive quantity,
we use logarithmic quantities, Inox and Inoy, in actual
computations to avoid boundary artifacts at zero.

Linear regression of multi-wavelength datasets from a
survey must take into account two systematic effects. First,
the slopes can be underestimated by the measurement
errors of the x value, so-called, the regression dilution effect
(Akritas & Bershady 1996; Kelly 2007; Sereno 2016). Sec-
ondly, selection effects, e.g., Malmquist bias, affects sample
selected above an observational threshold (e.g., Mantz
et al. 2010, 2016; Sereno 2016; Mantz 2019; Mulroy et al.
2019). We follow the mathematical formulation of Sereno
(2016) to overcome the above two problems. We introduce
the parent population, p(Z|@), assuming the Gaussian
distribution, N(uz, 0z), where uz and oy are hyper-
parameters. In a generalized case, the parent population
can be the summation of multiple Gaussian distributions:
p(Z10) = >, miN(zi, 02,;), where 7; is the normaliza-
tion satisfying with Y ;w; = 1. The standard deviation,
oz, effectively corrects for the regression dilution effect
(Akritas & Bershady 1996; Kelly 2007; Sereno 2016). The
total parameters are 0 = «, B, Xy, 4z, 0z. The selection
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bias is modelled by truncating the probability distribution
with the threshold of yu, on a tracer y, for cluster
finders, where the subscript # denotes the nth cluster. The
Bayesian chain rule gives the likelihood function of the
D-dimensional scaling relations, as follows:

[ 7 dX, [ dPY, (7 dZ, (%, ¥l X0, Y.) (X0, Yol Z,, 0) p(Z,16)

When we consider redshift evolution in linear regres-
sion and p(Z), the linear regression forms ax + BxZ +
yxInE(z) and a« + BZ+ y In E(z) and the parameters of
p(Z, z) are described by pz(z) = 1z + y.,In E(z) and

plx, y10) = —x

1_[,, /‘OO d)/an ff‘; dxn szo dD71 Yn szo d)(n ff; dDYn ff; dZn P(xm ynlxrn Yn)p<Xm Yn|Zn7 a)P(ZnW)’

Yth,0.n

denotes the #nth cluster, dP'y, =
d’Y, = dY,,dY,,---dY,p.

Given Bayes’ theorem, a conditional probability given

where n
dyn.ldyn,Z Tt dyn,D’ and

the observables is expressed by p(8|x, y) & p(x, y|0)p(6)
where p(@) is the prior distribution of the parameters.
The method takes into account the intrinsic covariance
between cluster properties (i), selection effect (o7,
Uz, Yin0), weak-lensing mass calibration (ax, Bx, ox),
and observational error covariance matrix (X, ), for the
purpose of the analysis of the multivariate scaling relations.
We adopt the MCMC method and a biweight estimate
of the posterior distributions. We use a flat prior [—10%,
10*] on 6 = a, each parameter of the intrinsic covariance
of X, [equation (A1)], and uz. We employ a Student’s #
distribution with one degree of freedom on B so that slope
angles become uniformly distributed. A non-informative
prior distribution on the variance of the parent distribution,
o2, follows a scaled inverse x? distribution as a conjugate
prior, satisfying that posterior distributions have the same
probability distribution family as the prior distribution.

Regression dilution effect

2
input —t—
14 —— without p(Z|6)
— with p(Z10)
O-
—1-
S
—21
—3-
—4-
-5 y : . r r T

Inoy(z) =Inozo + ¥, In E(2). Since we assume no error in
cluster redshifts, the regression dilution effect disappears.
The prior of redshift-dependent slopes, y, is a Student’s ¢
distribution with one degree of freedom.

There is also a practical problem of numerical errors
in computing the inverse of the composition matrix of
the intrinsic covariance and the measurement errors.
As aforementioned, all the parameters in the intrinsic
covariance and the composition matrix should satisfy the
condition of the covariance correlation matrix. We com-
pute the eigenvalues of the two matrices by the parameters
randomly and independently proposed in each step. If
there is at least one negative eigenvalue, we re-propose
new parameters. Otherwise, the inverse matrix calculation
has large numerical errors especially in higher dimensions,
giving poorly-constrained posterior distributions.

Figure 13 demonstrates the regression dilution effect and
the selection effect in 1D scaling relations from mock simu-
lations including errors and intrinsic scatter. The left-hand
panel uses data independent of any selection processes and
the right-hand panel uses a sample catalog selected from a

Selection effect
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—— non-selection
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|
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Fig. 13. Regression dilution effect (left) and selection effect (right) of the mock simulations. The solid black lines denote the input scaling relations.
The solid red lines and transparent regions are the estimate and the 1o uncertainty by our code. The solid blue lines and transparent regions are
the estimate and the 1o uncertainty without a consideration of the regression dilution effect or the selection effect. When we improperly treat these
effects, the slopes are underestimated. The data in the right-hand panel is selected above the threshold of y = —2.5. (Color online)
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Fig. 14. Performance of our Bayesian code of slope, normalization, intrinsic scatter and intrinsic correlation coefficient (from top to bottom). A

multiplicative error (m; red circles) and an additive error (c; blue diamonds) are specified in an equation #output

= mx Binput + ¢. Each error size

corresponds to the error per a parameter. We consider 2D and 4D scaling relations with a combination of 10% and 50% measurement errors in {x, y}
and two parent populations. The parent population of samples is assumed to be either a halo mass function (Tinker et al. 2008) at z= 0.3 or Gaussian
distribution. Each subset compiles 500 simulations. One simulation is composed of ~ 100 clusters. The sample clusters are drawn through a tracer
vo. Input parameters of scaling relations are uniformly distributed in « = [0, 1], 8 = [0.3, 1.7], 0int = [0.05, 0.4], and r = [-0.8, 0.8]. The code can
constrain slope and normalization well, irrespective of parent distribution. The intrinsic scatter and correlation coefficient can be constrained when
the measurement errors are smaller than intrinsic scatter. In the opposite case, neither intrinsic scatter nor the correlation coefficient is constrained
with a large 10 uncertainty. When we employ the measurement error matrix similar to this study [p(Z2) and p(Z, 2)], the input parameters are recovered.

(Color online)

mass function through a mass-observable scaling relation
with the truncated threshold on the y-quantity. The code
recovers the input parameters well, while the computa-
tion without p(Z|#) (regression dilution effect) or with
Yth,0,n >
slopes.
We further assess the performance of the newly

—oo (selection effect) underestimates the

developed code using eight mock simulations, each of
which is composed of 500 realizations. The first six
simulations use a 2D or 4D scaling relation with different
Individual measurement errors in
{x, y} are randomly assigned from o°* = [0.05, 0.2] or

= [0.4, 0.6], we refer them to as 10% and 50%,
respectively. We assumed two cases with the error cor-

setup parameters.

err err

relation 7" = 0 or r*" = [—1, 1]. Each cluster is drawn
through a tracer y, from a parent population of Gaussian
distribution or a halo mass function of Tinker et al.
(2008) at z = 0.3. Each parameter combination are
referred in the x label of figure 14. We simulate ~100
clusters per run, corresponding to the case of this study.
In each simulation, the input parameters of the scaling

relations are randomly drawn from a uniform distribution

in ay = [0, 1], By =[0.3,1.7], 0y = [0.05,0.4], and ry =
[—0.8, 0.8], respectively. The range of intrinsic scatter, oy,
is lower than 50% measurement error, and higher than or
comparable to 10% error. We fix external mass calibration
parameters; ax = 0, Bx = 1, 0x = 0.1, and rx,; = 0.

code by
0 ourpur = M X Oinpye + ¢, Where 05,5, is the input parameter,

We quantify the performance of our

Ooupue is the output parameter, m is a multiplicative
error, and ¢ is an additive error. The results are shown
in figure 14. The code can constrain both slope and
normalization, irrespective of the parent distribution.
While intrinsic scatter and correlation coefficients are
constrained well when the measurement errors are smaller
than intrinsic scatter, they cannot be constrained when the
measurement errors are larger than intrinsic scatter.

We choose the parameters for the last two sim-
ulations to be similar to measurement errors of this

study; o™ =1[0.75,1.25], o;"=0.1, o5 =1[02,0.7],
oy =0.02, and o5 =[0.4,1]. The error correlation

coefﬁc1ents are set to be " =0.85, ri =095, and

re" =1[0.64, 0.97], and the others are fixed to zero. The

Y
input parameters of the scaling relations are randomly
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drawn from a uniform distribution in o« = [0, 1], 8 = [0.3,
1.7], 0ine = [0.4, 0.8], and 7;,, = [—0.8, 0.8], respectively.
The intrinsic scatter is larger than that employed in the
first six simulations. We fix ax = In0.89, Bx = 1.09,
ox = 0.21, and rxy, =0. As for the parent popula-
tion, we adopt the two cases of no-redshift dependence
p(Z) and redshift dependence p(Z, z). In the latter
case, the random redshift is uniformly distributed in z
= [0.1, 1] and the mass function is computed at the
given redshift. Then, the sample is constructed with a
selection cut similar to the observation (figure 9). Although
the measurement errors for the x quantity are large, the
input parameters, including intrinsic scatter and correlation
coefficients, are recovered because the error correlations
are all taken into account.

Appendix 2 Regression dilution effect

We briefly explain the regression dilution effect (e.g.,
Akritas & Bershady 1996). We first consider the two true
variables of {X,, Y,} for the nth cluster of the sample size
N, where we assume ax = 0, Bx = 1, and o x = 0, and thus
p(X) = p(Z). We assume that the two variables follow a
simple linear regression, specified by

Xl :aY+ﬂYXn+8n’ (A3)

where ¢, is a random variable drawn from the intrinsic
scatter (0, oy) of the parameter Y.

The regression parameters, ay and By, are described by
the first- and second-order moments of equation (A3):

ay = E(Y,) — ByE(X,) = uy — Byiix, (A4)

(1/N) Zn(Xn — ux)(Y, — wy) _ Oxy

b= NS X ot

(AS)

where uy = E(X,,) and uy = E(Y,) are the average quan-
tities, oy is a variance of the parent population p(X),
and oyy is the covariance of the bivariate X and Y
distribution.

We next consider a measurement error model on X,

Yn :a+ﬁxn+8n (A6)

xfl = Xn + n?l? (A7)

where x,, is the observed quantity and 7, is the measure-

ment error drawn from N(0, o), irrespective of X,,. The

x
regression parameters become

5 — WUN X, = E)IY, — 1)
(1/N) Zn[‘xn - E(xn)]z '

(I/N) > (X + 10— ux)(Yy — piy)
(1/N Y (X + 10— ux)?
_ (/N Y (X — By
(1/N) 3 (X — x)? + (ogm)?”

= P (A8)
o =py — — % Byux,
%+ (og)?
ox
=ay+ [1 - W] Byiix (A9)

If the sample size is infinite (cx — ©00), the regression
parameters, « and B, coincide with ayx and By, respec-
tively. However, in the case of the finite sample size, the
slope directly estimated by the observables is underesti-
mated by [1 + (05%)?/o%]~!. When we consider the mea-
surement error and the variance of the parent population in
the regression analysis, we correct the measured value, 8,
by [1 + (657)? /o'2]. The Bayesian forward modeling enables
us to recover By directly.
We next introduce the observed quantity y,,, as follows:

Vo =0 + B'%, + &4, (A10)
X = X, + Ny (A11)
Yo =Y, + &, (A12)

where &, is the measurement error of y,. The slope

parameter becomes

ﬂ/ — (1/N) Zn[xn - E(xn)][yn - E(yn)]
(1/N-) Zn[xn - E(xn)]z '
_{/N) Do X+ 1 — )Y, + & — ny)
(1/N) Y (X + 0, — px)? ’
_{/N) Yo X — )Yy — ) + (1/N) Y, 046
/N (X —pwx)?+ /N, 2
(/N (X, — px)? By + o
(/N Y (X, — mx)* A+ (o)

2 err
9% Oy

= + :
0)2( + (O-;rr)z ﬂy 0)2( + (U;rr)Z

(A13)

where ¢ is the error correlation between the x and

x
y quantit}iles. If there is no error correlation (og" = 0),
equation (A13) coincides with equation (A8) and thus the
regression dilution effect depends on the error of the x quan-
tity. If the errors are correlated, it is important to imple-
ment the error covariance matrix in the regression analysis

[equation (A2)].
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As described above, ot

x

in the finite sample gives rise to
the regression dilution effect, while 5 does not, as long as

err

it is not correlated with o¢™. Therefore, it is vitally impor-

x
tant to infer o and py to estimate the regression coefficient
parameters accurately. Here, we do not assume any specific
distributions of the X quantity, but require only 0% and px.
In our case, they correspond to o2 and pz of the logarithm
distribution of the true mass. Hence, we do not necessarily
need a full description of p(Z) but effective estimations of
ox and u in the regression analysis. In other words, the
introduction of uz and o7 in our scaling relation analysis
is neither for cosmological purposes nor for an accurate
measurement of the mass function. This paper assumes the
Gaussian distribution, N (i z, 07), to correct for the regres-
sion dilution effect. The Gaussian distribution enables a fast
computation. They are determined as hyper-parameters to
respond flexibly to an unknown population distribution
(appendix 1).

Appendix 3 Aperture correction

In the above regression analysis, we use the Y quantities
measured within the observed overdensity radii, 7, and
obtain the scaling relation of Y, =Y (< 7X)=a + BZ.
When we study the correlation between the true mass and
the observables measured within the true mass overdensity,

7%, we convert Y (< rX) Z)

%)

into Yz(< r#). The original

baseline, Y (< r*), can be expanded in series up to the

first order of a radius deviation, 877, as follows:

Y z(< %)

Yo<r®)=Yu<r?) + 07

sr. (A14)

The new baseline is thus specified by
AY z(< 1%) sp?
ar?
—a+8Y,+BZ, (A15)

Y<r?) =Yy (<1 —

where 8Y is the aperture correction term in the scaling
relation of interest. We consider the logarithmic quantity,
Y, xInO; and Z o In M(< 7?), where O; and M are the
observable and the true mass, respectively. Assuming that
the averaged density profile for the observable, O;, fol-
lows a power law distribution p; o« #*, we find §Y; =
—(3 = p)8r’/r?) = —(1 — p/3)8M(< r*)/M(< r*). We
recall the mass calibration relation between the observed
mass and the true mass, X = ay + BxZ, and then obtain
SM(< r?%)/M(< r?) = e®x*x=DZ _ 1 Inshort, the aperture
correction term becomes

aYZ:( —g){l—exp[ax+(,3x—l)2]}. (A16)

The normalization, & +8Yz, in the scaling relation
[equation (A15)] slightly changes as a function of the true
mass.

Appendix 4 Posterior distribution

It is worth showing the posterior distributions of our main
result (tables 1 and 2). Due to the page size limit, we split
the 25 parameters into two figures for normalization and
slopes (figure 15) and intrinsic covariance (figure 16) for
the 7% = r{i .71, case. Black solid curves represent the
trivariate Gaussian distribution prior for the weak-lensing

mass calibration (sub-subsection 2.4.3).
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Fig. 15. Posterior distributions of the normalization, «, and slope, B, parameters. Dark and light blue regions in the two-dimensional param-
eter planes denote 10 and 2o uncertainty, respectively. Black solid curves are the priors of the weak-lensing mass calibration of ay and By
(sub-subsection 2.4.3). Black dashed lines are the resulting values. (Color online)
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Fig. 16. Posterior distributions of the intrinsic covariance of the scaling relations. Dark and light blue regions in the two-dimensional parameter planes
denote 10 and 20 uncertainty, respectively. The black solid curve is the priors of the weak-lensing mass calibration of In oy (sub-subsection 2.4.3).
Black dashed lines are the resulting values. (Color online)

Appendix 5 Scaling relations without equation (13) except for redshift-dependent slopes:

the E(2) correction

M\X/L
In some numerical simulations (e.g., Le Brun et al. 2014; ¥ = In ﬁ’ (A17)
Martizzi et al. 2014; Wu et al. 2015; Barnes et al. 2017a;
McCarthy et al. 2017; Farahi et al. 2018b, 2020) and
observational papers (e.g., Lin et al. 2003, 2004; Gonzalez y = {ln Ly In M, In Mgcg
et al. 2013; Lagana et al. 2013), they investigated the 108 ergs=!’ " 102 My, " 102 My’
scaling relations without the E(z) correction. It is useful M,
to show the results assuming no redshift evolution. We In M}’
define the observables independent of redshifts as in Y, =a+BZ (A18)

equation (11). The form of scaling relations is similar to
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Table 7. Resulting regression parameters of the scaling
relations between the cluster quantities (M5, Lx, M., Macg,
and My) and the true mass Msy for the 136 XXL clusters
without the E(z) correction.f

o B Tint
e IUHE e oan
L 072 1390k o7l
M, 0680 07edE 0530
Maca o 0seRl 0700
M, 202 sl 12s0R

fThe normalization, «, and the slope, B, are defined by the linear regressions

[equation (A18)]. The intrinsic scatter at a fixed true mass is represented by

Oint-

The results using a trivariate Gaussian prior as the WL mass calibration, as

described in sub-subsection 2.4.3. The errors denote the 1o uncertainty.

Table 8. Intrinsic covariance for the 136 XXL clusters (Lx, M,,

Mgca, and Mg) without the E(z) correction.!

Lx M, Mpca Mg
Lx 0.79%015  0.08%Ge5 010750 0307010
0.22 0.08 0.06 0.09
M. 020753 0.53%5.06 0.25%006 0.05%50¢
Mgcg  018%013  0.68050 070705 0.04704;
0.01 0.28 0.15 0.08
M, 0981001 027:028 0 q7t015 (384008

tEach column is the same as in table 2.

Here, we assume that the scaling relations do not
evolve with redshift (y = 0); however, we employ the
redshift-dependent mean uz(z) and standard deviation
07(z) of parent population p(Z, z) because the sample
selection depends on redshift (sub-subsection 4.1.2 and
figure 9). With this set-up, we repeat the Bayesian anal-
ysis for scaling relations. The results are shown in
tables 7 and 8.
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